Elastic Foundation Displacement Approximations

Authors

  • Vytautas Kargaudas Civil Engineering and Architecture Competences Centre, Kaunas University of Technology, Kaunas, Lithuania
  • Nerijus Adamukaitis Civil Engineering and Architecture Competences Centre, Kaunas University of Technology, Kaunas, Lithuania
  • Mykolas Žmuida Civil Engineering and Architecture Competences Centre, Kaunas University of Technology, Kaunas, Lithuania
  • Algis Pakalnis Dept of Transport Engineering, Kaunas University of Technology, Kaunas, Lithuania
  • Saulius Zadlauskas Civil Engineering and Architecture Competences Centre, Kaunas University of Technology, Kaunas, Lithuania

DOI:

https://doi.org/10.7250/bjrbe.2019-14.436

Keywords:

additional pressure, continuum models, elastic foundation, spring–membrane system, surface displacements

Abstract

Interaction of an elastic foundation and structures like beams, plates and frames plays an essential role in investigating soil media in contact and impact mechanics. The solution to this interaction problem is complicated even the foundation is assumed as a linear elastic medium. E. Winkler suggested the fair representation of the foundation in 1867, and then, to bring it closer to reality, an interaction between the spring elements was introduced. In this paper, a relatively simple membrane-spring system is investigated, where an ideal gas is added under or above the membrane. In many cases, this constant pressure in the cavity modifies the solution and accuracy of the approximation is significantly increased. The cases of concentrated normal force and uniform distributed load are examined. The results of elastic half-space line displacements and the membrane displacements are presented.

References

Ashley, H. (1956). Piston theory-a new aerodynamic tool for the aeroelastician. Journal of the Aeronautical Sciences, 23(12), 1109-1118. https://doi.org/10.2514/8.3740

Challamel, N., Meftah, S. A., & Bernard, F. (2010). Buckling of elastic beams on non-local foundation: A revisiting of Reissner model. Mechanics Research Communications, 37(5), 472-475. https://doi.org/10.1016/j.mechrescom.2010.05.007

Di Paola, M., Marino, F., & Zingales, M. (2009). A generalized model of elastic foundation based on long-range interactions: Integral and fractional model. International Journal of Solids and Structures, 46(17), 3124-3137. https://doi.org/10.1016/j.ijsolstr.2009.03.024

Filonenko-Borodich, M. M. (1940). Some approximate theories of elastic foundation. Uchenyie Zapiski Moskovkogo Gosudarstuennogo Universiteta Mekhanika, Moscow, 46, 3-18.

Hetenyi, M. (1950). A general solution for the bending of beams on an elastic foundation of arbitrary continuity. Journal of Applied Physics, 21(1), 55-58. https://doi.org/10.1063/1.1699420

Horvath, J. S., & Colasanti, R. J. (2011). Practical subgrade model for improved soil-structure interaction analysis: model development. International Journal of Geomechanics, 11(1), 59-64. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000070

Johnson, K. L. (1987). Contact mechanics. Cambridge university press.

Kerr, A. D. (1964). Elastic and viscoelastic foundation models. Journal of Applied Mechanics, 31(3), 491-498. https://doi.org/10.1115/1.3629667

Kerr, A. D. (1984). On the formal development of elastic foundation models. Ingenieur-Archiv, 54(6), 455-464. https://doi.org/10.1007/BF00537376

Kerr, A. D., & Coffin, D. W. (1991). Beams on a two-dimensional Pasternak base subjected to loads that cause lift-off. International Journal of Solids and Structures, 28(4), 413-422. https://doi.org/10.1016/0020-7683(91)90057-M

Kneifati, M. C. (1985). Analysis of plates on a Kerr foundation model. Journal of Engineering Mechanics, 111(11), 1325-1342. https://doi.org/10.1061/(ASCE)0733-9399(1985)111:11(1325)

Lin, L., & Adams, G. G. (1987). Beam on tensionless elastic foundation. Journal of Engineering Mechanics, 113(4), 542-553. https://doi.org/10.1061/(ASCE)0733-9399(1987)113:4(542)

Nobili, A. (2012). Variational approach to beams resting on two-parameter tensionless elastic foundations. Journal of Applied Mechanics, 79(2), 021010. https://doi.org/10.1115/1.4005549

Omurtag, M. H., & Kadıoḡlu, F. (1998). Free vibration analysis of orthotropic plates resting on Pasternak foundation by mixed finite element formulation. Computers & structures, 67(4), 253-265. https://doi.org/10.1016/S0045-7949(97)00128-4

Pasternak, P.L. (1954). On a new Method of Analysis of an Elastic Foundation by Means of Two Foundation Constants. Gosuderevstvennae Izdatlesva Literaturi po Stroitelstvu i Arkihitekture, Moscow, USSR (in Russian)

Prudnikov, A. B. (2018). Integrals and series. Routledge.

Reissner, E. (1958). A note on deflections of plates on a viscoelastic foundation. J. Appl. Mech., ASME, 25, 144-145.

Sironic, L., Murray, N. W., & Grzebieta, R. H. (1999). Buckling of wide struts/plates resting on isotropic foundations. Thin-walled structures, 35(3), 153-166. https://doi.org/10.1016/S0263-8231(99)00029-4

Vasani, P. C. (2003). Interactive analysis models for soil and structures. Structural Engineering Foru of India.

Vlasov, V. Z. (1966). Beams, plates and shells on elastic foundation. Israel Program for Scientific Translation.

Winkler, E. (1867). Die Lehre von der Elastizität und Festigkeit. Dominicus, Prague.

Worku, A. (2014). Development of a calibrated Pasternak foundation model for practical use. International Journal of Geotechnical Engineering, 8(1), 26-33. https://doi.org/10.1179/1938636213Z.00000000055

Downloads

Published

27.06.2019

How to Cite

Kargaudas, V., Adamukaitis, N., Žmuida, M., Pakalnis, A., & Zadlauskas, S. (2019). Elastic Foundation Displacement Approximations. The Baltic Journal of Road and Bridge Engineering, 14(2), 125-135. https://doi.org/10.7250/bjrbe.2019-14.436