Elastic Foundation Displacement Approximations
DOI:
https://doi.org/10.7250/bjrbe.2019-14.436Keywords:
additional pressure, continuum models, elastic foundation, spring–membrane system, surface displacementsAbstract
Interaction of an elastic foundation and structures like beams, plates and frames plays an essential role in investigating soil media in contact and impact mechanics. The solution to this interaction problem is complicated even the foundation is assumed as a linear elastic medium. E. Winkler suggested the fair representation of the foundation in 1867, and then, to bring it closer to reality, an interaction between the spring elements was introduced. In this paper, a relatively simple membrane-spring system is investigated, where an ideal gas is added under or above the membrane. In many cases, this constant pressure in the cavity modifies the solution and accuracy of the approximation is significantly increased. The cases of concentrated normal force and uniform distributed load are examined. The results of elastic half-space line displacements and the membrane displacements are presented.
References
Ashley, H. (1956). Piston theory-a new aerodynamic tool for the aeroelastician. Journal of the Aeronautical Sciences, 23(12), 1109-1118. https://doi.org/10.2514/8.3740
Challamel, N., Meftah, S. A., & Bernard, F. (2010). Buckling of elastic beams on non-local foundation: A revisiting of Reissner model. Mechanics Research Communications, 37(5), 472-475. https://doi.org/10.1016/j.mechrescom.2010.05.007
Di Paola, M., Marino, F., & Zingales, M. (2009). A generalized model of elastic foundation based on long-range interactions: Integral and fractional model. International Journal of Solids and Structures, 46(17), 3124-3137. https://doi.org/10.1016/j.ijsolstr.2009.03.024
Filonenko-Borodich, M. M. (1940). Some approximate theories of elastic foundation. Uchenyie Zapiski Moskovkogo Gosudarstuennogo Universiteta Mekhanika, Moscow, 46, 3-18.
Hetenyi, M. (1950). A general solution for the bending of beams on an elastic foundation of arbitrary continuity. Journal of Applied Physics, 21(1), 55-58. https://doi.org/10.1063/1.1699420
Horvath, J. S., & Colasanti, R. J. (2011). Practical subgrade model for improved soil-structure interaction analysis: model development. International Journal of Geomechanics, 11(1), 59-64. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000070
Johnson, K. L. (1987). Contact mechanics. Cambridge university press.
Kerr, A. D. (1964). Elastic and viscoelastic foundation models. Journal of Applied Mechanics, 31(3), 491-498. https://doi.org/10.1115/1.3629667
Kerr, A. D. (1984). On the formal development of elastic foundation models. Ingenieur-Archiv, 54(6), 455-464. https://doi.org/10.1007/BF00537376
Kerr, A. D., & Coffin, D. W. (1991). Beams on a two-dimensional Pasternak base subjected to loads that cause lift-off. International Journal of Solids and Structures, 28(4), 413-422. https://doi.org/10.1016/0020-7683(91)90057-M
Kneifati, M. C. (1985). Analysis of plates on a Kerr foundation model. Journal of Engineering Mechanics, 111(11), 1325-1342. https://doi.org/10.1061/(ASCE)0733-9399(1985)111:11(1325)
Lin, L., & Adams, G. G. (1987). Beam on tensionless elastic foundation. Journal of Engineering Mechanics, 113(4), 542-553. https://doi.org/10.1061/(ASCE)0733-9399(1987)113:4(542)
Nobili, A. (2012). Variational approach to beams resting on two-parameter tensionless elastic foundations. Journal of Applied Mechanics, 79(2), 021010. https://doi.org/10.1115/1.4005549
Omurtag, M. H., & Kadıoḡlu, F. (1998). Free vibration analysis of orthotropic plates resting on Pasternak foundation by mixed finite element formulation. Computers & structures, 67(4), 253-265. https://doi.org/10.1016/S0045-7949(97)00128-4
Pasternak, P.L. (1954). On a new Method of Analysis of an Elastic Foundation by Means of Two Foundation Constants. Gosuderevstvennae Izdatlesva Literaturi po Stroitelstvu i Arkihitekture, Moscow, USSR (in Russian)
Prudnikov, A. B. (2018). Integrals and series. Routledge.
Reissner, E. (1958). A note on deflections of plates on a viscoelastic foundation. J. Appl. Mech., ASME, 25, 144-145.
Sironic, L., Murray, N. W., & Grzebieta, R. H. (1999). Buckling of wide struts/plates resting on isotropic foundations. Thin-walled structures, 35(3), 153-166. https://doi.org/10.1016/S0263-8231(99)00029-4
Vasani, P. C. (2003). Interactive analysis models for soil and structures. Structural Engineering Foru of India.
Vlasov, V. Z. (1966). Beams, plates and shells on elastic foundation. Israel Program for Scientific Translation.
Winkler, E. (1867). Die Lehre von der Elastizität und Festigkeit. Dominicus, Prague.
Worku, A. (2014). Development of a calibrated Pasternak foundation model for practical use. International Journal of Geotechnical Engineering, 8(1), 26-33. https://doi.org/10.1179/1938636213Z.00000000055
Downloads
Published
Issue
Section
License
Copyright (c) 2019 Vytautas Kargaudas
This work is licensed under a Creative Commons Attribution 4.0 International License.