Assessment of Risky Cornering on a Horizontal Road Curve by Improving Vehicle Suspension Performance

Authors

DOI:

https://doi.org/10.7250/bjrbe.2021-16.537

Keywords:

horizontal curve, edge of pavement, road roughness, critical speed, vehicle stability, vehicle suspension, damping force

Abstract

Vehicle stability during cornering on horizontal road curves is a risky stage of travel because of additional factors acting. The main stability factor is centrifugal force, which depends on road curve sharpness and is very sensitive to driving speed usually controlled by the driver. However, the counterforce is produced at tire-road interaction, where different pavement types and states cause a wide variation of tire contact forces and vehicle stability. In the paper, the part of vehicle suspension performance while moving on a sharp horizontal road curve with different levels of pavement roughness was simulated by 14 degrees of freedom vehicle model. The model was built in MATLAB/Simulink software with available pavement roughness selection according to ISO 8608. The influence of variable suspension damping available in modern vehicles on risky cornering is analysed when a vehicle reaches the edge of the pavement with its specific roughness. Critical parameters of vehicle stability depending on road curvature, pavement roughness and driving speed are selected to assess the solutions for safe cornering.

References

AASHTO. (2008). American Association of State Highway and Transportation Officials. Driving Down Lane-Departure Crashes: A National Priority.

AASHTO. (2010). Highway Safety Manual. American Association of State Highway Transportation Officials, Washington, D.C.

Abulizi, N., Kawamura, A., Tomiyama, K., Fujita, Sh. (2016). Measuring and evaluating of road roughness conditions with a compact road profiler and ArcGIS. Journal of Traffic and Transportation Engineering (English Edition), 3(5), 398–411. https://doi.org/10.1016/j.jtte.2016.09.004

Ahmad, T., & Khawaja, H. (2018). Review of Low-Temperature Crack (LTC) Developments in Asphalt Pavements. The International Journal of Multiphysics, 12(2), 169–187. https://doi.org/10.21152/1750-9548.12.2.169

Aram, A. (2010). Effective Safety Factors on Horizontal Curves of Two-lane Highways. Journal of Applied Sciences, 10(22), 2814–2822. https://doi.org/10.3923/jas.2010.2814.2822

Arbabpour Bidgoli, M., Galroo, A., Sheikhzadeh Nadjar, H., Rashidabad A. G., & Reza Ganji, M. (2019). Road Roughness measurement using a cost effective sensor-based monitoring system. Automation in Construction, 104, 140–152. https://doi.org/10.1016/j.autcon.2019.04.007

ASTM E1926-08. (2015). Standard practice for computing International Roughness Index of Roads from longitudinal profile measurements. ASTM International.

Bíl, M., Andrášik, R., & Sedoník, J. (2019). Which curves are dangerous? A network-wide analysis of traffic crash and infrastructure data. Transportation Research Part A: Policy and Practice, 120, 252–260. https://doi.org/10.1016/j.tra.2019.01.001

Bíl, M., Andrášik, R., Sedoník, J., & Cícha, V. (2018). ROCA – An ArcGIS toolbox for road alignment identification and horizontal curve radii computation. PLoS ONE 13(12). https://doi.org/10.1371/journal.pone.0208407

Bogenreif, C., Souleyrette, R. R., & Hans, Z. (2012). Identifying and Measuring Horizontal Curves and Related Effects on Highway Safety. Journal of Transportation Safety & Security, 4(3), 179–192. https://doi.org/10.1080/19439962.2011.646001

Calvi, A. (2015). A Study on Driving Performance Along Horizontal Curves of Rural Roads. Journal of Transportation Safety & Security, 7(3), 243–267. https://doi.org/10.1080/19439962.2014.952468

Canestrari, F., & Ingrassia, L. P. (2020). A review of top-down cracking in asphalt pavements: Causes, models, experimental tools and future challenges. Journal of Traffic and Transportation Engineering, 7(5), 541–572. https://doi.org/10.1016/j.jtte.2020.08.002

Cebon, D. (1999). Handbook of vehicle-road interaction. CRC Press.

Chen, M. Z. Q., Hu, Y., Li, C., & Chen, G. (2016a). Application of Semi-Active Inerter in Semi-Active Suspensions Via Force Tracking. Journal of Vibration and Acoustics, 138(4), 041014. https://doi.org/10.1115/1.4033357

Chen, W., Xiao, H., Wang, Q., Zhao, L., & Zhu, M. (2016b). Integrated Vehicle Dynamics and Control. John Wiley & Sons. https://doi.org/10.1002/9781118380000

Chen, X. (2015). From Texture to Skid Resistance: A Multi-Scale Modelling Approach. Journal of Testing and Evaluation, 2, 465–471. https://doi.org/10.1520/JTE20130291

Cheng, G., Cheng, R., Pei, Y., & Xu, L. (2020). Probability of Roadside Accidents for Curved Sections on Highways. Mathematical Problems in Engineering, 2020, Article ID 9656434. https://doi.org/10.1155/2020/9656434

Dirección General de Tráfico (DGT). (2015). http://www.dgt.es/es/ seguridad-vial/estadisticas-e-indicadores/

Directive 2008/96/EC of the European Parliament and of the Council of 19 November 2008 on road infrastructure safety management.

Eboli, L., Forciniti, C., & Mazzulla, G. (2020). Factors influencing accident severity: an analysis by road accident type. Transportation Research Procedia, 47, 449–456. https://doi.org/10.1016/j.trpro.2020.03.120

Elvik, R. (2013). International transferability of accident modification functions for horizontal curves. Accident Analysis and Prevention, 59, 487–496. http://dx.doi.org/10.1016/j.aap.2013.07.010

Elvik, R. (2019). The more (sharp) curves, the lower the risk. Accident Analysis and Prevention, 113, 105322. https://doi.org/10.1016/j.aap.2019.105322

Elnashar, G., Bhat, R. B., & Sedaghati, R. (2019). Modeling and dynamic analysis of a vehicle-flexible pavement coupled system subjected to road surface excitation. Journal of Mechanical Science and Technology, 33(7), 3115–3125. https://doi.org/10.1007/s12206-019-0606-5

ERA-NET ROAD. (2012). Safety at the Heart of Road Design. Final Report of the ERA-NET programme.

Eshkabilov, S., & Yunusov, A. (2018). Measuring and Assessing Road Profile by Employing Accelerometers and IRI Assessment Tools. American Journal of Traffic and Transportation Engineering, 3(2), 24–10. https://doi.org/10.11648/j.ajtte.20180302.12

European Commission. (2010). Towards a European road safety area: policy orientations on road safety 2011–2020 (COM(2010) 389 final of 20 July 2010).

European Commission. (2018). Road Safety 2018. How is your country doing? https://ec.europa.eu/transport/road_safety/sites/roadsafety/files/pdf/ scoreboard_2018_en.pdf

Federal Highway Administration, U.S. Department of Transportation. (2014). Safety Effects of Horizontal Curve and Grade Combinations on Rural Two-Lane Highways. Report, FHWA-HRT-13-078.

Furlan, A. D., Kajaks, T., Tiong, M., Lavallière, M., Campos, J. L., Babineau, J., Haghzare, S., Ma, T., & Vrkljan, B. (2020). Advanced vehicle technologies and road safety: A scoping review of the evidence. Accident Analysis & Prevention, 147, 105741. https://doi.org/10.1016/j.aap.2020.105741.

Gooch, J. P., Gayah, V. V., & Donnell. E. T. (2016). Quantifying the safety effects of horizontal curves on two-way, two-lane rural roads. Accident Analysis and Prevention, 92, 71–81. http://dx.doi.org/10.1016/j.aap.2016.03.024

Guiggiani, M. (2014). The Science of Vehicle Dynamics. Handling, Braking, and Ride of Road and Race Cars. Springer.

Hall, J. W., Smith, K. L, Titus-Glover, L., Wambold, J. C., Yager, T. J., & Rado, Z. (2006). Guide for Pavement Friction. NCHRP Project 1-43, National Cooperative Highway Research Program (NCHRP), Washington, D.C.

Høye, A. (2020). Speeding and impaired driving in fatal crashes—Results from in-depth investigations. Traffic Injury Prevention, 21(7), 425–430. https://doi.org/10.1080/15389588.2020.1775822

Hummer, J. E., Rasdorf, W., Findley, D. J., Zegeer, Ch. V., & Sundstrom, C. A. (2010). Curve Collisions: Road and Collision Characteristics and Countermeasures. Journal of Transportation Safety & Security, 2(3), 203–220. https://doi.org/10.1080/19439961003734880

Inzerillo, L., Di Mino, G., & Roberts, R. (2018). Image-based 3D reconstruction using traditional and UAV datasets for analysis of road pavement distress. Automation in Construction, 96, 457–469. https://doi.org/10.1016/j.autcon.2018.10.010

ISO 8608:1995. Mechanical vibration – Road surface profiles – Reporting of measured data.

Jazar, R. N. (2014). Vehicle Dynamics: Theory and Application. Springer.

Kelių techninis reglamentas, (2008). KTR 1.01:2008 Automobilių keliai [Road technical regulation. Roads for land vehicles].

Lamm, R., Psarianos, B., & Mailaender, T. (1999). Highway Design and Traffic Safety Engineering: Handbook. McGraw Hill.

Leitner, B., Decký, M., & Kováč, M. (2019). Road pavement longitudinal evenness quantification as stationary stochastic process. Transport, 34(2), 195–203. https://doi.org/10.3846/transport.2019.8577

Leonovič, I., Laurinavičius, A., & Čygas, D. (2013). Keliai ir klimatas. Technika.

Li, L., Sun, L., Ning, G., & Tan, S. (2014). Automatic pavement crack recognition based on BP neural network. Promet – Traffic & Transportation, 26(1), 11-22. https://doi.org/10.7307/ptt.v26i1.1477

Lithuanian Road Police. (2020). Annual road accident report.

Liu, H., Gao, H., Li, P. (2013). Handbook of vehicle suspension control systems. The Institution of Engineering and Technology.

Liu, W., Wang, R., Ding, R., Meng, X., & Yang, L. (2020). On-line estimation of road profile in semi-active suspension based on unsprung mass acceleration. Mechanical Systems and Signal Processing, 135, 106370. https://doi.org/10.1016/j.ymssp.2019.106370

Loprencipe, G., Zoccali, P., & Cantisani, G. (2019). Effects of Vehicular Speed on the Assessment of Pavement Road Roughness. Applied Sciences, 9, 1783. https://doi.org/10.3390/app9091783

Maljković, D ., & C vitanić, D . ( 2016). E valuation o f d esign c onsistency o n horizontal curves for two-lane state roads in terms of vehicle path radius and speed. The Baltic Journal of Road and Bridge Engineering, 11(2), 127–135. https://doi.org/10.3846/bjrbe.2016.15

Mastinu, G., & Ploechl, M. (2014). Road and Off-Road Vehicle System Dynamics Handbook. CRC Press.

Mitschke, M., Wallentowitz, H. (2014). Dynamik der Kraftfahrzeuge. Springer.

Miller, J. S., & Bellinger, W. Y. (2014). Distress identification manual for the long-term pavement performance program (No. FHWA-RD-13-092). United States. Federal Highway Administration. Office of Infrastructure Research and Development.

Múčka, P. (2016). Road Roughness Limit Values Based on Measured Vehicle Vibration. Journal of Infrastructure Systems, 23(2), 1–13. https://doi.org/10.1061/(ASCE)IS.1943-555X.0000325

Múčka, P. (2019). Influence of profile specification on International Roughness Index. Journal of Infrastructure Systems, 25(2), 1–14. https://doi.org/10.1061/(ASCE)IS.1943-555X.0000478

Othman, S., Thomson, R., & Lannér, G. (2010). Are Driving and Overtaking on Right Curves More Dangerous than on Left Curves? Ann Adv Automot Med., 54, 253–264.

Paukštė, J. (2015). Strateginio planavimo ir vystymo modelio analizė, vertinimas ir taikymas Šiaulių regiono magistralinių kelių tinklo valdymui. Vilnius.

Pawar, P. R., Mathew, A. T. & Saraf, M. R. (2018). IRI (International Roughness Index): An Indicator of Vehicle Response. Materials Today: Proceedings, 5(5), 11738–11750. https://doi.org/10.1016/j.matpr.2018.02.143

PIARC Technical Committee on Road Safety. (2003). Road Safety Manual. World Road Association.

Qingbo, Z. (2016). Pavement crack detection algorithm based on image processing analysis. 2016 8th International Conference on Intelligent Human-Machine Systems and Cybernetics, 15–18. https://doi.org/10.1109/IHMSC.2016.96

Queensland Transport. (2006). Webcrash 2.3: Queensland Government.

Rakotonirainy, A., Chen, S., Scott-Parker, B., Loke, S. W., & Krishnaswamy S. (2015). A Novel Approach to Assessing Road-Curve Crash Severity. Journal of Transportation Safety & Security, 7(4), 358–375. https://doi.org/10.1080/19439962.2014.959585

Šabanovič, E., Žuraulis, V., Prentkovskis, O., & Skrickij, V. (2020). Identification of Road-Surface Type Using Deep Neural Networks for Friction Coefficient Estimation. Sensors, 20(3), 0612. https://doi.org/10.3390/s20030612

SafetyNet. (2010). Accident causation database 2005 to 2008. European Commision.

Savaresi, S. M., & Spelta, C. (2009). A single-sensor control strategy for semi-active suspensions. IEEE Transactions on Control Systems Technology, 17(1), 143–152. https://doi.org/10.1109/TCST.2008.906313

Savaresi, S. M., Poussot-Vassal, C., Spelta, C., Sename, O., & Dugard, L. (2010). Semi-Active Suspension Control Design for Vehicles. Butterworth-Heinemann/ Elsevier.

Sayers, M. W. (1995). On the calculation of international roughness index from longitudinal road profile. Transportation Research Record, 1501, 1–12.

Sayers, M. W. & Karamihas, S. M. (1998). The little book of profiling. University of Michigan, MI.

Schiehlen, W., & Iroz, I. (2015). Uncertainties in Road Vehicle Suspensions. Procedia IUTAM, 13, 151–159. https://doi.org/10.1016/j.piutam.2015.01.016

Šeporaitis, M., Vorobjovas, V., & Vaitkus, A. (2020). Evaluation of Horizontal Curve Radius Effect on Driving Speed in Two Lane Rural Road. Pilot Study. The Baltic Journal of Road and Bridge Engineering, 15(4), 252–270. https://doi.org/10.7250/bjrbe.2020-15.503

Shields, B., Morris, A., Jo, B., & Fildes, B. (2001). Australia’s National Crash In-depth Study Progress Report. Monash University, Accident Research Centre.

Shtayat, A., Moridpour, S., Best, B., Shroff, A., & Raol, D. (2020). A review of monitoring systems of pavement condition in paved and unpaved roads. J. Traffic Transp. Eng. 7(5), 629–638. https://doi.org/10.1016/j.jtte.2020.03.004

Shuler, S., & Nobe, M. D. (2007) Edge Cracking in residential development hot mix asphalt pavements. International Journal of Construction Education and Research, 3, 179–197. https://doi.org/10.1080/15578770701715029

Sivilevičius, H., & Vansauskas, V. (2013). Research and evaluation of ruts in the asphalt pavement on Lithuanian highways. Journal of Civil Engineering and Management, 19(5), 609–621. https://doi.org/10.3846/13923730.2013.8174 81

Sivilevičius, H., Bražiūnas, J., & Prentkovskis, O. (2017). Technologies and principles of hot recycling and investigation of preheated reclaimed asphalt pavement batching process in an asphalt mixing plant. Applied sciences, 7(11), 1–20. https://doi.org/10.3390/app7111104

Skrickij, V., Savitski, D., Ivanov, V., & Skačkauskas, P. (2018). Investigation of cavitation process in monotube shock absorber. International Journal of Automotive Technology, 19(5), 801–810. https://doi.org/10.1007/s12239-018-0077-1

Ślaski, G. (2010). Damping parameters of suspension of a passenger vehicle equipped with semi-active dampers with a by-pass valve. Transport Problems, 6(5), 35–42.

Surblys, V. (2020). Nelygia kelio danga važiuojančio lengvojo automobilio pusiau aktyvios pakabos valdymo algoritmai. Technika. https://doi.org/10.20334/2020-003-M

Surblys, V., & Sokolovskij, E. (2018). The research of passenger car passive and semi-active suspension. Mokslas – Lietuvos ateitis / Science – Future of Lithuania, 10, 1–5. https://doi.org/10.3846/mla.2018.6050

Suzuki, T., & Takahashi, M. (2012). Semi-Active Suspension Control Considering Lateral Vehicle Dynamics Due to Road Input. New Advances in Vehicular Technology and Auto-motive Engineering, IntechOpen. http://dx.doi.org/10.5772/45789

Torbic, D. J., Harwood, D. W., Gilmore, D. K., Pfefer, R., Neuman, T. R., Slack, K. L., & Hardy, K. K. (2004). Guidance for Implementation of the AASHTO Strategic Highway Safety Plan: A Guide for Reducing Collisions on Horizontal Curves. NCHRP Report 500 Series, Transportation Research Board, Washington, D.C.

Vázquez, V. F., Hidalgo, M. E., García-Hoz, A. M., Camara, A., Terán F., Ruiz-Teran, A. M., & Paje, S. E. (2020). Tire/road noise, texture, and vertical accelerations: Surface assessment of an urban road. Applied Acoustics, 160, 107153. https://doi.org/10.1016/j.apacoust.2019.107153

World Health Organization. (2018). Global status report on road safety 2018.

World Health Organization. (2020). Road traffic injuries https://www.who.int/ news-room/fact-sheets/detail/road-traffic-injuries ( Online A ccessed 2 3 November 2020)

Xu, C., Wang, C., Ding, Y., & Wang, W. (2020) Investigation of extremely severe traffic crashes using fault tree analysis. Transportation Letters, 12(3), 149–156. https://doi.org/10.1080/19427867.2018.1540146

Xu, J., Luo, X. & Shao, YM. (2018). Vehicle trajectory at curved sections of two-lane mountain roads: a field study under natural driving conditions. European Transport Research Review, 10, Article 12. https://doi.org/10.1007/s12544-018-0284-x

Praticò, H., Kita, H., Xing, J., & Hirai, Sh. (2017). A car-accident rate index for curved roads: A speed choice–based approach. Transportation Research Procedia, 25, 2108–2118. https://doi.org/10.1016/j.trpro.2017.05.404

Zhang, Y., Chen, W., Chen, L., & Shangguan, W. (2007). Non-stationary Random Vibration Analysis of Vehicle with Fractional Damping. 13th National Conference on Mechanisms and Machines, 171–178.

Yang, J., Ning, D., Sun, S. S., Zheng, J., Lu, H., Nakano, M., Zhang, S., Du, H., & Li, W. H. (2021). A semi-active suspension using a magnetorheological damper with non-linear negative-stiffness component. Mechanical Systems and Signal Processing, 147, 107071. https://doi.org/10.1016/j.ymssp.2020.107071

Yang, S., Li, S., Chen, L. (2015). Dynamics of Vehicle–Road Coupled System. Springer.

Žuraulis, V., & Sokolovskij, E. (2015). Vehicle Velocity Relation to Slipping Trajectory Change: An Option for Traffic Accident Reconstruction. Promet – Traffic & Transportation, 30(4), 395–406. https://doi.org/10.7307/ptt.v30i4.2720

Žuraulis, V., Sokolovskij, E., & Matijošius, J. (2015). The opportunities for establishing the critical speed of the vehicle on research in its lateral dynamics. Eksploatacja i Niezawodnosc – Maintenance and Reliability, 15(4), 312–318.

Žuraulis, V., Surblys, V., & Šabanovič, E. (2019). Technological measures of forefront road identification for vehicle comfort and safety improvement. Transport, 34(3), 363–372. https://doi.org/10.3846/transport.2019.10372

th Annual Road Safety Performance Index (PIN) Report. (2018). European Transport Safety Council. https://etsc.eu/12th-annual-road-safety-perfor¬mance-index-pin-report/

Downloads

Published

28.12.2021

How to Cite

Žuraulis, V., & Surblys, V. (2021). Assessment of Risky Cornering on a Horizontal Road Curve by Improving Vehicle Suspension Performance. The Baltic Journal of Road and Bridge Engineering, 16(4), 1-27. https://doi.org/10.7250/bjrbe.2021-16.537