Dependency of Pavement Roughness Level on the Type of Road Works




IRI, pavement condition survey, pavement management system, road works, road roughness index


Managing the condition of the road network is essential to ensure sustainable and efficient road maintenance and development. The term asset management is broad, it describes the actions of infrastructure management – the activities associated with structure maintenance and operation, asset improvement, and development. The article analyzes the impact of the road works on the reduction of Road Roughness Index (IRI) depending on the road type and the type of repair. The annual change in IRI is estimated taking into account certain conditions - pavement structure class, road type, heavy traffic flow, repair type. The research analyzes the data of control assurance protocols of road sections repaired in 2008–2016 and the data of routine pavement performance surveys of the Lithuanian road network conducted in 2019. The results of the research are of considerable practical significance, it is recommended to include them in the repair selection module used by the Lithuanian pavement management system.


Abdelaziz, N., Abd El-Hakim, R. T., El-Badawy, S. M., & Afify, H. A. (2020). International Roughness Index prediction model for flexible pavements. International Journal of Pavement Engineering, 21(1), 88–99.

Beckley, M. E. (2016). Pavement deterioration modeling using historical roughness data [Master of Science Thesis, Arizona State University]. 5f/1?pq-origsite=gscholar&cbl=18750

Chen, D., Hildreth, J., Fang, X., Ogunro, V. O., & Laville, C. (2014). Development of IRI limits and targets for network management and construction approval purposes (Report No. RP 2013-02). North Carolina Department of Transportation.¬Report.pdf

Chen, L., & Bai, Q. (2019). Optimization in decision making in infrastructure asset management: A review. Applied Sciences, 9(7), Article 1380.

de Lurdes Antunes, M., Marecos, V., Neves, J., & Morgado, J. (2016). Decision to paving solutions in road infrastructures based on life-cycle assessment. Baltic Journal of Road and Bridge Engineering, 11(1), 43–52.

Edeskär, T., Perez, V., Ullberg, J., & Ekdal, P. (2017). Longitude profiling as a tool for evaluation of frost actions active pavement section. Proceedings of the 10th International Conference on the Bearing Capacity of Roads, Railways and Airfields, BCRRA 2017, 2095–2102.

EU. (1999). Paris, performance analysis of road infrastructure. European Commission, DG Transport.

Georgiou, P., Plati, C., & Loizos, A. (2018). Soft computing models to predict pavement roughness: A comparative study. Advances in Civil Engineering, 2018, Article 5939806.

Gong, H., Dong, Q., Huang, B., & Jia, X. (2016). Effectiveness analyses of flexible pavement preventive maintenance treatments with LTPP SPS-3 experiment data. Journal of Transportation Engineering, 142(2), 04015045.

Lietuvos automobilių kelių direkcija (LAKD). (2018). Automobilių kelių dangos konstrukcijos asfalto sluoksnių įrengimo taisyklės ĮT asfaltas 08.

Lietuvos automobilių kelių direkcija (LAKD). (2019). Automobilių kelių standartizuotų dangų konstrukcijų projektavimo taisyklės KPT SDK 19.

Lietuvos automobilių kelių direkcija (LAKD). (2020a). 2019 metų veiklos ataskaita.

Lietuvos automobilių kelių direkcija (LAKD). (2020b). Rekonstruotinų IR kapitaliai remontuotinų valstybinės reikšmės keliųruožų vertinimo irprioritetinės eilės sudarymo metodika.

Lietuvos Respublikos aplinkos ministerija. (2008). Kelių techninis reglamentas “Automobilių keliai“ (KTR 1.01).

Mathew, A. T., Pawar P. R., & Saraf, M. R. (2018). IRI (International Roughness Index): An indicator of vehicle response. Materials Today: Proceedings, 5(5/2), 11738–11750.

Psalmen Hasibuan, R., & Sejahtera Surbakti, M. (2019). Study of pavement condition index (PCI) relationship with international roughness index (IRI) on flexible pavement. MATEC Web of Conferences, 258, Article 03019.

Robbins, M. M., & Tran, N. H. (2016). A synthesis report: value of pavement smoothness and ride quality to roadway users and the impact of pavement roughness on vehicle operating costs (NCAT Report 16-03). National Center for Asphalt Technology (NCAT) at Auburn University. rep16-03.pdf

Sayers, M. W., & Karamihas, S. M. (1998). The little book of profiling basic information about measuring and interpreting road profiles (Technical report, accession number: 90151). University of Michigan, Ann Arbor, Transportation Research Institute.

Stankevičiūtė, D. (2010). Analysis of the change in service properties of the most important main roads in Lithuania [Master of Science Thesis]. Vilnius Gediminas Technical University.

Vaitkus, A., Laurinavičius, A., Oginskas, R., Motiejunas, A., Paliukaite, M., & Barvidiene, O. (2012). The road of experimental pavement structures: Experience of five years operation. Baltic Journal of Road and Bridge Engineering, 7(3), 220–227.

Vaitkus, A., Strumskys, M., Jasiūnienė, V., Jateikienė, L., Andriejauskas, T., & Skrodenis, D. (2016). Effect of intelligent transport systems on traffic safety. Baltic Journal of Road and Bridge Engineering, 11(2), 136–143.

Zofka, A., Josen, R., Paliukaite, M., Vaitkus, A., Mechowski, T., & Maliszewski, M. (2014). Elements of pavement management system: Case study. Baltic Journal of Road and Bridge Engineering, 9(1), 1–9.




How to Cite

Paplauskas, P., & Vaitkus, A. (2022). Dependency of Pavement Roughness Level on the Type of Road Works. The Baltic Journal of Road and Bridge Engineering, 17(1), 74-97.