Superpave Pavement Design Temperatures in Estonia

Authors

DOI:

https://doi.org/10.7250/bjrbe.2023-18.603

Keywords:

bitumen, pavement design, pavement temperature, penetration grading, performance grading, Superpave

Abstract

This paper introduces the maximum and minimum pavement temperatures of Estonian asphalt pavements in accordance with calculation models developed for North America and Norway. Historical meteorological data from 1992 to 2021 obtained from 25 different weather stations in Estonia were used as an input for the respective models. Comparison between the calculation models demonstrated high variability of the pavement design temperatures, thus significantly impacting the bitumen grade selection. Based on the road weather stations data, the Norwegian and Canadian models provide the most accurate pavement temperature estimations for Estonian conditions. Calculated upper and lower-bound pavement design temperatures varied between +52 °C to +58 °C and −22 °C to −34 °C, respectively. All models showed milder pavement temperatures and lower seasonal temperature amplitudes for coastal and offshore areas. The results also indicated the importance of validating model suitability as well as correlation with actual pavement temperatures in the Baltic region. 

References

Adams, C. K., & Holmgreen, R. J. (1986). Asphalt properties and pavement performance. Texas A&M University.

Asphalt Institute. (1996). Performance graded asphalt binder specification and testing. Superpave Series No. 1 (SP-1).

Asphalt Institute. (2011). The asphalt binder handbook. Manual Series No. 26 (MS-26).

CEN. (2009). EN 12591:2009. Bitumen and bituminous binders – Specifications for paving grade bitumens.

CEN. (2010). EN 14023:2010. Bitumen and bituminous binders – Framework specification for polymer modified bitumens.

CEN. (2015). EN 1426. Bitumen and bituminous binders – Determination of needle penetration.

Dawley, C., & Pulles, B. (1996). Guide to the Characteristics, Performance and Selection of Paving Asphalts (Research report 1996).

Dawson, A. (2009). Water in road structures: Movement, drainage & effects. Springer. https://doi.org/10.1007/978-1-4020-8562-8

Delgadillo, R., & Bahia, H. U. (2010). The relationship between nonlinearity of asphalt binders and asphalt mixture permanent deformation. Road Materials and Pavement Design, 11(3), 653–680. https://doi.org/10.1080/14680629.2010.9690298

EC. (1999). Development of a new bituminous pavement design method (COST 333 Final Report). European Comission. https://orbit.dtu.dk/en/publications/development-of-new-bituminous-pavement-design-method-cost-333-fin

Estonian Environmental Agency. (2021). Eesti Meteoroloogia Aastaraamat (in Estonian).

Hesp, S. A. M. (2003). An improved low-temperature asphalt binder specification method (Final Report, NCHRP-IDEA Contract 84 and Ministry of Transportation Ontario Contract 9015-A-000190).

Hesp, S. A. M., Soleimani, A., Subramani, S., Phillips, T., Smith, D., Marks, P., & Tam, K. K. (2009). Asphalt pavement cracking: Analysis of extraordinary life cycle variability in eastern and northeastern Ontario. International Journal of Pavement Engineering, 10(3), 209–227. https://doi.org/10.1080/10298430802343169

Kennedy, T. W., Huber, G. A., Harrigan, E. T., Cominsky, R. J., Hughes, C. S., Quintus, H. V., & Moulthrop, J. S. (1994). Superior performing asphalt pavements (Superpave): The product of the SHRP asphalt research program. Strategic Highway Research Program. National Research Council. https://www.trb.org/publications/shrp/SHRP-A-410.pdf

Lerfald, B. O., Andersen, E. O., Aurstad, J., Bragstad, R., Jørgensen, T., & Lange, G. (2004). PROKAS. Proporsjonering og kontroll av asfalt. Sluttrapport. (in Norwegian). SINTEF Teknologi um samfunn.

Lesueur, D. (2009). The colloidal structure of bitumen: Consequences on the rheology and on the mechanisms of bitumen modification. Advances in Colloid and Interface Science, 145(12), 42–82. https://doi.org/10.1016/j.cis.2008.08.011

Lill, K., Khan, A. N., Kontson, K., & Hesp, S. A. M. (2020). Comparison of performance-based specification properties for asphalt binders sourced from around the world. Construction and Building Materials, 261, Article 120552. https://doi.org/10.1016/j.conbuildmat.2020.120552

Mohseni, A. (1998). LTPP seasonal asphalt concrete (AC) pavement temperature models (Report No. FHWA-RD-97-103). https://www.fhwa.dot.gov/publications/research/infrastructure/pavements/ltpp/97103/97103.pdf

Petersen, J. C., Robertson, R. E., Branthaver, J. F., Harnsberger, P. M., Duvall, J. J., Kim, S. S., Anderson, D. A., Christiansen, D. W., & Bahia, H. U. (1993). Binder characterization and evaluation, Volume 1 (Report No. HRP-A-367). Strategic Highway Research Program, National Research Council. https://onlinepubs.trb.org/onlinepubs/shrp/SHRP-A-367.pdf

Saarela, A. (1992). Asfalttipäällysteiden tutkimusohjelma, ASTO 1987-1994. Asfalttipäällysteet. Osa I: Suunnittelu. Valtion teknillinen tutkimuskeskus, tie-, geo- ja liikennetekniikan laboratorio.

Vegvesen. (2014). Håndbok N200. Vegbygging (In Norwegian). Statens vegvesen. www.vegvesen.no/handboker

Downloads

Published

22.06.2023

How to Cite

Kontson, K., Lill, K., & Aavik, A. (2023). Superpave Pavement Design Temperatures in Estonia. The Baltic Journal of Road and Bridge Engineering, 18(2), 190-204. https://doi.org/10.7250/bjrbe.2023-18.603