Case Study of Old Steel Riveted Railway Truss Bridge: From Material Characterization to Structural Analysis

Authors

DOI:

https://doi.org/10.7250/bjrbe.2023-18.614

Keywords:

bridge structure, FEM, mechanical properties, steel riveted bridge, structural health assessment, truss bride

Abstract

The structural analysis of an old steel riveted railway truss bridge located over the Maruska River on the Działdowo – Olsztyn, Poland railway line is performed in this paper to check its behaviour under today’s railway loads. The mechanical properties of construction steel extracted from the old steel bridge are investigated by tensile tests, impact tests through the Charpy pendulum impact V-notch, and an optical emission spectrometer. Structural analysis exhibits that the steel bridge requires proper structural bridge improvements to meet today’s load requirements in terms of bearing capacity and serviceability state. The paper begins with a wide survey of literature carried out on the investigation of steel riveted railway bridge subject matter. This paper can provide scientists, engineers, and designers with an experimental and structural basis in the field of old steel riveted railway truss bridge construction.

References

Adamiec, P., & Dziubiński, J. (1995). Pękanie i trwałość napawanych części maszyn. Wydawnictwo Politechniki Śląskiej.

Aktan, A. E., Lee, K. L., Naghavi, R., & Hebbar, K. (1994). Destructive testing of two 80-year-old truss bridges. Transportation Research Record, 1460, 62–72. https://onlinepubs.trb.org/Onlinepubs/trr/1994/1460/1460-008.pdf

Alencar, G., de Jesus, A., da Silva, J. G. S., & Calçada, R. (2019). Fatigue cracking of welded railway bridges: A review. Engineering Failure Analysis, 104, 154–176. https://doi.org/10.1016/j.engfailanal.2019.05.037

Ambroziak, A., Haustein, E., & Kondrat, J. (2019). Chemical and mechanical properties of 70-year-old concrete. Journal of Materials in Civil Engineering, 31(8), 1–7. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002840

Ambroziak, A., & Malinowski, M. (2021). A 95-year-old concrete arch bridge: From materials characterization to structural analysis. Materials, 14(7), Article 1744. https://doi.org/10.3390/ma14071744

Apanas, L., Karlikowski, J., & Siekierski, W. (2018). Ocena skutków pęknięć poprzecznic w celu określenia warunków tymczasowej eksploatacji kolejowego przęsła kratownicowego. Archiwum Instytutu Inżynierii Lądowej, 26, 7–18. https://doi.org/10.21008/j.1897-4007.2018.26.01

Bacinskas, D., Kamaitis, Z., Jatulis, D., & Kilikevicius, A. (2013). Field testing of old narrow-gauge railway steel truss bridge. Procedia Engineering, 57, 136–143. https://doi.org/10.1016/j.proeng.2013.04.020

Banas, A., & Jankowski, R. (2020). Experimental and numerical study on dynamics of two footbridges with different shapes of girders. Applied Sciences, 10(13), Article 4505. https://doi.org/10.3390/app10134505

Bertolesi, E., Buitrago, M., Adam, J. M., & Calderón, P. A. (2021). Fatigue assessment of steel riveted railway bridges: Full-scale tests and analytical approach. Journal of Constructional Steel Research, 182, Article 106664. https://doi.org/10.1016/j.jcsr.2021.106664

Bień, J., & Salamak, M. (2022). The management of bridge structures – challenges and possibilities. Archives of Civil Engineering, 68(2), 5–35. https://doi.org/10.24425/ace.2022.140627

Boukezzi, L., Benaissa, A., Lehbab-Boukezzi, Z., & Nasser, B. (2021). Assessment of existing steel railway bridges, Algeria. European Journal of Environmental and Civil Engineering, 25(1), 117–131. https://doi.org/10.1080/19648189.2018.1518792

Brühwiler, E., Bosshard, M., Steck, P., Meyer, C., Tschumi, M., & Haldimann, S. (2013). Fatigue safety examination of a riveted railway bridge using data from long term monitoring. IABSE Conference, Assessment, Upgrading and Refurbishment of Infrastructures, Rotterdam, The Netherlands, 184–185. https://doi.org/10.2749/222137813806482986

Bryła, S. W. (1924). Podręcznik budownictwa żelaznego (Iron Building Handbook). Ksęgarnia Polska Bernarda Połonieckiego. https://bcpw.bg.pw.edu.pl/Content/3991/PDF/01SBPB_wstep.pdf

Cavadas, F., Rodrigues, C., Félix, C., & Figueiras, J. (2013). Post-rehabilitation assessment of a centenary steel bridge through numerical and experimental analysis. Journal of Constructional Steel Research, 80, 264–277. https://doi.org/10.1016/j.jcsr.2012.09.020

Chen, W., Yan, B., Liu, X., & Jiang, Y. (2012). Research on the finite element simulation of and updating method for old riveted truss bridges. Stahlbau, 81(5), 419–425. https://doi.org/10.1002/stab.201201539

Chmielewski, R., & Muzolf, P. (2021). Analysis of degradation process of a railway steel bridge in the final period of its operation. Structure and Infrastructure Engineering, 19(4), 537–53. https://doi.org/10.1080/15732479.2021.1956550

Collette, Q., Sire, S., Vermes, W. J., Mesler, V. J., & Wouters, I. (2014). Experimental investigations on hot-driven structural rivets in historical French and Belgian wrought-iron structures (1880s–1890s). Construction and Building Materials, 54, 258–269. https://doi.org/10.1016/j.conbuildmat.2013.12.059

Correia, J. A. F. O., da Silva, A. L. L., Xin, H., Lesiuk, G., Zhu, S.-P., de Jesus, A. M. P., & Fernandes, A. A. (2021). Fatigue performance prediction of S235 base steel plates in the riveted connections. Structures, 30, 745–755. https://doi.org/10.1016/j.istruc.2020.11.082

Croft, D. N. (1996). Effects of heat treatment. In Heat treatment of welded steel structures (pp. 21–47). Woodhead Publishing. https://doi.org/10.1533/9781845698812.21

Cywiński, Z. (1992). Zur Korrosionsrate von Baustahl in alten Brücken. Bauingenieur, 67(3), 147–149.

D-64. (1955). Normatyw Techniczny projektowania stalowych mostów kolejowych.

DB AG. (2000). DS 804 Standard: Vorschrift für Eisenbahnbrücken und sonstige Ingenieurbauwerke. Deutsche Bahn AG.

DB Netz AG. (2010). Directive RiL 805, Richtlinie 805.0102: Tragsicherfeit bestehender Eisenbahnbrücken. DB Netz AG.

de Jesus, A. M. P., da Silva, A. L. L., & Correia, J. A. F. O. (2014). Fatigue of riveted and bolted joints made of puddle iron – A numerical approach. Journal of Constructional Steel Research, 102, 164–177. https://doi.org/10.1016/j.jcsr.2014.06.012

Gheitasi, A., Michels, J., & Luo, S. (2022). Rehabilitation and retrofit design of a historic steel truss bridge in Virginia. International Bridge Conference, IBC 22-5, USA.

Gocál, J., & Odrobiňák, J. (2020). On the influence of corrosion on the load-carrying capacity of old riveted bridges. Materials, 13(3), Article 717. https://doi.org/10.3390/ma13030717

Goszczyńska, B., Świt, G., & Trąpczyński, W. (2014). Assessment of the technical state of large size steel structures under cyclic load with the acoustic emission method IADP. Journal of Theoretical and Applied Mechanics, 52(2), 289–299. http://jtam.pl/pdf-102163-33723?filename=Assessment%20of%20the.pdf

Goszczyńska, B., Świt, G., Trąpczyński, W., & Krampikowska, A. (2013). Application of acoustic emission method to assess the technical condition of the bolted bridge. Inżynieria i Budownictwo, 69(10), 559–562.

Haghani, R., Al-Emrani, M., & Heshmati, M. (2012). Fatigue-prone details in steel bridges. Buildings, 2(4), 456–476. https://doi.org/10.3390/buildings2040456

Helmerich, R. (2013). Riveted steel bridges : Semantic management of knowledge. Wrocław University of Technology.

Heydarinouri, H., Nussbaumer, A., Motavalli, M., & Ghafoori, E. (2021). Strengthening of steel connections in a 92-year-old railway bridge using prestressed CFRP rods: Multiaxial fatigue design criterion. Journal of Bridge Engineering, 26(6). https://doi.org/10.1061/(ASCE)BE.1943-5592.0001714

Hołowaty, J. (2017). Toughness tests on steels from old railway bridges. Procedia Structural Integrity, 5, 1043–1050. https://doi.org/10.1016/j.prostr.2017.07.067

Hołowaty, J. (2018). Properties of high tensile steels in historical railway bridges. Construction Materials, 171(6), 234–245. https://doi.org/10.1680/jcoma.17.00012

Hołowaty, J. M., & Wichtowski, B. (2013). Properties of Structural Steel used in Earlier Railway Bridges. Structural Engineering International, 23(4), 512–518. https://doi.org/10.2749/101686613X13627347099999

Hołowaty, J., & Wichtowski, B. (2015). Properties of steel in railway bridge constructed in 1887. Roads and Bridges – Drogi i Mosty, 14(4), 271–283. https://doi.org/10.7409/rabdim.015.018

Hołowaty, J., & Wichtowski, B. (2022). Properties of structural steels in historical railway bridges by diagnostic tests. Ce/Papers, 5(4), 73–78. https://doi.org/10.1002/cepa.1730

Holzinger, H., Jeschko, A., Robra, J., & Ramberger, G. (2002). Strengthening of an old arch truss bridge, Austria. Structural Engineering International, 12(4), 276–280. https://doi.org/10.2749/101686602777965153

Imam, B., Righiniotis, T. D., & Chryssanthopoulos, M. K. (2005). Fatigue of riveted railway bridges. Steel Structures, 5(5), 485–494.

ISO. (2016). ISO 148-1 Metallic materials – Charpy pendulum impact test – Part 1: Test method. International Organization for Standardization.

ISO. (2019). ISO 6892-1 Metallic materials – Tensile testing – Part 1: Method of test at room temperature. International Organization for Standardization.

Jakiel, P., & Bajno, D. (2018). Assessment of technical condition of historic Penny Bridge in Opole in the context of its restoration. MATEC Web of Conferences, 174, Article 03019. https://doi.org/10.1051/matecconf/201817403019

Jang, S., Li, J., & Spencer, B. F. (2013). Corrosion estimation of a historic truss bridge using model updating. Journal of Bridge Engineering, 18(7), 678–689. https://doi.org/10.1061/(asce)be.1943-5592.0000403

Jukowski, M., Bȩc, J., & Błazik-Borowa, E. (2018). Identification of the numerical model of FEM in reference to measurements in situ. AIP Conference Proceedings, 1922(1), Article 150008. https://doi.org/10.1063/1.5019161

Kääriäinen, J., & Pulkkinen, P. (2002). Rehabilitation of Tornionjoki steel truss bridge, Finland. Structural Engineering International, 12(4), 273–275. https://doi.org/10.2749/101686602777965207

Koc, W. (2021). An analytical approach to intertrack space widening on railroad curves. Problemy Kolejnictwa – Railway Reports, 65(193), 83–95. https://doi.org/10.36137/1933E

Kołakowski, P., Mroz, A., Sala, D., Pawłowski, P., Sekuła, K., & Świercz, A. (2013). Investigation of dynamic response of a railway bridge equipped with a tailored SHM system. Key Engineering Materials, 569–570, 1068–1075. https://doi.org/10.4028/www.scientific.net/KEM.569-570.1068

Kołakowski, P., Szelek, J., Sekuła, K., Świercz, A., Mizerski, K., & Gutkiewicz, P. (2011). Structural health monitoring of a railway truss bridge using vibration-based and ultrasonic methods. Smart Materials and Structures, 20(3), Article 035016. https://doi.org/10.1088/0964-1726/20/3/035016

Kossakowski, P. G. (2013). Fatigue strength of an over one hundred year old railway bridge. Baltic Journal of Road and Bridge Engineering, 8(3), 166–173. https://doi.org/10.3846/bjrbe.2013.21

Kossakowski, P. G. (2016). Mechanical properties of late-nineteenth-century bridge steel at low temperature. Procedia Engineering, 156, 180–185. https://doi.org/10.1016/j.proeng.2016.08.284

Kossakowski, P. G. (2021). Mechanical properties of bridge steel from the late 19th century. Applied Sciences (Switzerland), 11(2), Article 478. https://doi.org/10.3390/app11020478

Kowal, M., & Szala, M. (2020). Diagnosis of the microstructural and mechanical properties of over century-old steel railway bridge components. Engineering Failure Analysis, 110, Article 104447. https://doi.org/10.1016/j.engfailanal.2020.104447

Krawczyk, R., Słania, J., Golański, G., & Zieliński, A. (2022). Evaluation of the properties and microstructure of thick-walled welded joint of wear resistant materials. Materials, 15(19), Article 7009. https://doi.org/10.3390/ma15197009

Kwiatkowski, J., Anigacz, W., & Beben, D. (2020). A case study on the noncontact inventory of the oldest European cast-iron bridge using terrestrial laser scanning and photogrammetric techniques. Remote Sensing, 12(17), Article 2745. https://doi.org/10.3390/rs12172745

Łagoda, G., & Łagoda, M. (2009). Strengthening steel bridge across Vistula River in Poland. IABSE Symposium: Sustainable Infrastructure – Environment Friendly, Safe and Resource Efficient, Bangkok, Thailand, 156–164. https://doi.org/10.2749/222137809796088468

Leander, J., Norlin, B., & Karoumi, R. (2015). Reliability-based calibration of fatigue safety factors for existing steel bridges. Journal of Bridge Engineering, 20(10). https://doi.org/10.1061/(ASCE)BE.1943-5592.0000716

Leonetti, D., Maljaars, J., Pasquarelli, G., & Brando, G. (2020). Rivet clamping force of as-built hot-riveted connections in steel bridges. Journal of Constructional Steel Research, 167, Article 105955. https://doi.org/10.1016/j.jcsr.2020.105955

Lima, K., Robson, N., Oosterhof, S., Kanji, S., DiBattista, J., & Montgomery, C. J. (2008). Rehabilitation of a 100-year-old steel truss bridge. Proceedings, Annual Conference – Canadian Society for Civil Engineering, 4, 2408–2418. https://www.researchgate.net/publication/289063540_Rehabilitation_of_a_100-year-old_steel_truss_bridge

Malešev, M., Radonjanin, V., Ladinović, D., Lukić, I., Šupić, S., & Draganić, S. (2016). The road steel bridge over Bosut river in Serbia Part 1: The assessment of the bridge. Procedia Engineering, 156, 219–226. https://doi.org/10.1016/j.proeng.2016.08.290

Malinowski, M., Banas, A., Cywiński, Z., Jeszka, M., & Sitarski, A. (2017). Zur Wiedergeburt einer historischen Gitterbrücke. Stahlbau, 86(9), 789–796. https://doi.org/10.1002/stab.201710523

Malinowski, M., Banas, A., Jeszka, M., & Sitarski, A. (2018). Imaginative footbridge in Mikolajki, Poland. Stahlbau, 87(3), 248–255. https://doi.org/10.1002/stab.201810582

Marchewka, A., Ziółkowski, P., & Aguilar-Vidal, V. (2020). Framework for structural health monitoring of steel bridges by computer vision. Sensors (Switzerland), 20(3), Article 700. https://doi.org/10.3390/s20030700

Marques, F., Correia, J. A. F. O., de Jesus, A. M. P., Cunha, Á., Caetano, E., & Fernandes, A. A. (2018). Fatigue analysis of a railway bridge based on fracture mechanics and local modelling of riveted connections. Engineering Failure Analysis, 94, 121–144. https://doi.org/10.1016/j.engfailanal.2018.07.016

Marques, F., Moutinho, C., Magalhães, F., Caetano, E., & Cunha, Á. (2014). Analysis of dynamic and fatigue effects in an old metallic riveted bridge. Journal of Constructional Steel Research, 99, 85–101. https://doi.org/10.1016/j.jcsr.2014.04.010

Martín-Sanz, H., Tatsis, K., Damjanovic, D., Stipanovic, I., Sajna, A., Duvnjak, I., Bohinc, U., Brühwiler, E., & Chatzi, E. (2019). Getting more out of existing structures: Steel bridge strengthening via UHPFRC. Frontiers in Built Environment, 5, Article 26. https://doi.org/10.3389/fbuil.2019.00026

Michalak, B., & Eckert, W. (2018). The historic steel bridge in Stany. Heritage preservation. Changing the function. Civil and Environmental Engineering Reports, 28(2), 111–123. https://doi.org/10.2478/ceer-2018-0023

Nagavi, R. S., & Aktan, A. E. (2003). Nonlinear behavior of heavy class steel truss bridges. Journal of Structural Engineering, 129(8), 1113–1121. https://doi.org/10.1061/(ASCE)0733-9445(2003)129:8(1113)

Nam, H., Yoo, J., Yun, K., Xian, G., Park, H., Kim, N., Song, S., & Kang, N. (2021). Comprehensive analysis of cold-cracking ratio for flux-cored arc steel welds using Y- and y-grooves. Materials, 14(18), Article 5349. https://doi.org/10.3390/ma14185349

Nguyen, X. T., Nogami, K., Yoda, T., Kasano, H., Murakoshi, J., Honda, H., & Tashiro, D. (2015). Evaluation of corrosion at contact surface on gusset plate connections of steel truss bridge. J-STAGE, 22(85), 161–171. https://doi.org/10.11273/jssc.22.85_161

Nowak, M., Lyasota, I., & Kisała, D. (2017). Testing the node of a railway steel bridge using an acoustic emission method. In G. Shen, Z. Wu, & J. Ahang (Eds.), Advances in Acoustic Emission Technology, 179, (pp. 265–275). Springer, Cham. https://doi.org/10.1007/978-3-319-29052-2_23

Ocel, J. (2021). Historical changes to steel bridge design, composition, and properties (Report No. FHWA-HRT-21-020). Federal Highway Administration. https://www.fhwa.dot.gov/publications/research/infrastructure/structures/bridge/21020/index.cfm

Pipinato, A. (2010). Step level procedure for remaining fatigue life evaluation of one railway bridge. Baltic Journal of Road and Bridge Engineering, 5(1), 28–37. https://doi.org/10.3846/bjrbe.2010.04

Pipinato, A., Pellegrino, C., & Modena, C. (2012). Assessment procedure and rehabilitation criteria for the riveted railway Adige Bridge. Structure and Infrastructure Engineering, 8(8), 747–764. https://doi.org/10.1080/15732479.2010.481674

PKN. (1945). PN-B-195 Concrete and reinforced concrete structures. Structural analysis and design. Polish Committee for Standardization.

PKN. (1951). PN-B-03200 Steel structures – Design rules. Polish Committee for Standardization.

PKN. (1982). PN-S-10052 Obiekty mostowe – Konstrukcje stalowe – Projektowanie. Polish Committee for Standardization.

PKN. (1985). PN-S-10030 Bridges. Loads. Polish Committee for Standardization.

PKN. (2007). PN-EN 1991-2:2007 Eurocode 1: Actions on structures – Part 2: Traffic loads on bridges. Polish Committee for Standardization.

PKN. (2022). PN-EN 15528 Railway applications – Line categories for managing the interface between load limits of vehicles and infrastructure. Polish Committee for Standardization.

PKP. (2015). Id-1 (D-1) Warunki Techniczne utrzymania nawierzchni na liniach kolejowych. PKP Polskie Linie Kolejowe S.A.

Rakoczy, A. M. (2021). Fatigue safety verification of riveted steel railway bridges using probabilistic method and standard S-N curves. Archives of Civil Engineering, 67(4), 625–642. https://doi.org/10.24425/ace.2021.138522

Riveiro, B., González-Jorge, H., Varela, M., & Jauregui, D. V. (2013). Validation of terrestrial laser scanning and photogrammetry techniques for the measurement of vertical underclearance and beam geometry in structural inspection of bridges. Measurement, 46(1), 784–794. https://doi.org/10.1016/j.measurement.2012.09.018

Rules for the construction and maintenance of road bridges. (1926). Pomorska Drukarnia Rolnicza S. A. https://polona.pl/item/przepisy-o-budowie-i-utr¬zymaniu-mostow-drogowych-obowiazujace-od-1-stycznia-1926-roku.MzU0 NzE1Nzg/8/#info:metadata

Salem, H. M., & Helmy, H. M. (2014). Numerical investigation of collapse of the Minnesota I-35W bridge. Engineering Structures, 59, 635–645. https://doi.org/10.1016/j.engstruct.2013.11.022

Sanekata, M., Nishida, H., Nakagomi, Y., Hirai, Y., Nishimiya, N., Tona, M., Hirata, N., Yamamoto, H., Tsukamoto, K., Ohshimo, K., Misaizu, F., & Fuke, K. (2021). Dependence of optical emission spectra on argon gas pressure during modulated pulsed power magnetron sputtering (MPPMS). Plasma, 4(2), 269–280. https://doi.org/10.3390/plasma4020018

Sangiorgio, V., Nettis, A., Uva, G., Pellegrino, F., Varum, H., & Adam, J. M. (2022). Analytical fault tree and diagnostic aids for the preservation of historical steel truss bridges. Engineering Failure Analysis, 133, Article 105996. https://doi.org/10.1016/j.engfailanal.2021.105996

Schabowicz, K. (2021). Testing of materials and elements in civil engineering. Materials, 14(12), Article 3412. https://doi.org/10.3390/ma14123412

Sieber, L., & Stroetmann, R. (2013). Assessment methods to avoid brittle failure of old steel structures. Assessment, Upgrading and Refurbishment of Infrastructures, Rotterdam, The Netherlands, 574–575. https://doi.org/10.2749/222137813806548361

Siekierski, W. (2015). An efficient method for analysis of service load stresses in bridge gusset plates. Engineering Structures, 84, 152–161. https://doi.org/10.1016/j.engstruct.2014.11.029

Siekierski, W. (2016). Analysis of gusset plate of contemporary bridge truss girder. Baltic Journal of Road and Bridge Engineering, 11(3), 188–196. https://doi.org/10.3846/bjrbe.2016.22

Siwowski, T. (2013). The rehabilitation of long span truss bridge. Long Span Bridges and Roofs – Development, Design and Implementation, Kolkata, India, 1–8. https://doi.org/10.2749/222137813808627028

Siwowski, T. (2015). Fatigue assessment of existing riveted truss bridges: Case study. Bulletin of the Polish Academy of Sciences: Technical Sciences, 63(1), 125–133. https://doi.org/10.1515/bpasts-2015-0014

Siwowski, T., Zobel, H., Al-Khafaji, T., & Karwowski, W. (2020). The recently built polish large arch bridges – A review of construction technology. Archives of Civil Engineering, 66(4), 7–43. https://doi.org/10.24425/ace.2020.135207

Stamatopoulos, G. N. (2013). Fatigue assessment and strengthening measures to upgrade a steel railway bridge. Journal of Constructional Steel Research, 80, 346–354. https://doi.org/10.1016/j.jcsr.2012.10.004

Steffen, S., Niemann, P., & Geißler, K. (2023). Erläuterungen zur aktuell überarbeiteten Richtlinie 805 zur Bewertung von Ingenieurbauwerken der Deutschen Bahn. Bautechnik, 100(6), 318–333. https://doi.org/10.1002/bate.202300044

Tasak, E., & Ziewiec, A. (2009). Spawalność materiałów konstrukcyjnych tom 1 Spawalność stali. Wydawnictwo JAK.

Tomków, J., & Tomków, M. (2019). The influence of the carbon equivalent on the weldability of high-strength low-alloy steel in the water environment. Welding Technology Review, 91(5), 43–49. https://doi.org/10.26628/wtr.v91i5.1001

UIC. (1986). UIC 779-1 Z. Zalecenia do określania nośności istniejących przęseł stalowych.

Vélez, Á. P., Sánchez, A. B., Bruna, O. A., Abella, D. M., de Prado, L. Á., & Fernández, M. M. (2021). Material behavior and fatigue assessment of old steel bridges of the spanish conventional rail network. Materials, 14(18), Article 5275. https://doi.org/10.3390/ma14185275

Vičan, J., Gocál, J., Odrobiňák, J., & Koteš, P. (2016). Existing steel railway bridges evaluation. Civil and Environmental Engineering, 12(2), 103–110. https://doi.org/10.1515/cee-2016-0014

Vůjtěch, J., Ryjáček, P., Campos Matos, J., & Ghafoori, E. (2021). Iron-based shape memory alloy for strengthening of 113-year bridge. Engineering Structures, 248, Article 113231. https://doi.org/10.1016/j.engstruct.2021.113231

Walia, S. K., Patel, R. K., Vinayak, H. K., & Parti, R. (2015). Time-frequency and wavelet-based study of an old steel truss bridge before and after retrofitting. Journal of Civil Structural Health Monitoring, 5(4), 397–414. https://doi.org/10.1007/s13349-015-0116-9

Wang, C. S., Qian, H., Zhan, A., Xu, Y., & Hu, D. L. (2007). Fatigue and fracture evaluation of a 70 year old steel bridge. Key Engineering Materials, 347, 359–364. https://doi.org/10.4028/www.scientific.net/KEM.347.359

Wang, C. S., Sheng, H. J., Hu, J. Y., Yan, S. L., & Duan, L. (2012). Material properties and fatigue safety evaluation of old metal bridges. Key Engineering Materials, 525–526, 137–140. https://doi.org/10.4028/www.scientific.net/KEM.525-526.137

Wichtowski, B. (2014). Load-carrying capacity of steel railway bridges of the second half of XIX century – discussion. Roads and Bridges – Drogi i Mosty, 13(3), 261–269. https://doi.org/10.7409/rabdim.014.017

Wichtowski, B., & Hołowaty, J. (2011). Structural steels in old railway bridges analized by hardness and chemical content (Analiza stali starych mostów kolejowych według badań twardości i składu chemicznego). XXV Konferencja Naukowo-Techniczna – Awarie Budowalne, 1259–1266.

Yilmaz, M. F., Ozakgul, K., & Caglayan, B. O. (2022). Simulation-based reliability analysis of steel girder railway bridges. Baltic Journal of Road and Bridge Engineering, 17(3), 44–65. https://doi.org/10.7250/bjrbe.2022-17.568

Zobel, H., Karwowski, W., Wróbel, M., & Mossakowski, P. (2016). Łazienkowski bridge fire in Warsaw – Structural damage and restoration method. Archives of Civil Engineering, 62(4), 171–186. https://doi.org/10.1515/ace-2015-0104

Zoltowski, K., Banas, A., Binczyk, M., & Kalitowski, P. (2022). Control of the bridge span vibration with high coefficient passive damper. Theoretical consideration and application. Engineering Structures, 254, Article 113781. https://doi.org/10.1016/j.engstruct.2021.113781

Downloads

Published

26.09.2023

How to Cite

Ambroziak, A., & Malinowski, M. (2023). Case Study of Old Steel Riveted Railway Truss Bridge: From Material Characterization to Structural Analysis. The Baltic Journal of Road and Bridge Engineering, 18(3), 188-216. https://doi.org/10.7250/bjrbe.2023-18.614