Rebuilding Bailey Bridge to Bridge With Bascule Span – A Case Study

Authors

DOI:

https://doi.org/10.7250/bjrbe.2024-19.631

Keywords:

Bailey bridge, bridge structure, foldable bridge, FEM, structural analysis

Abstract

The structural analysis of a road foldable prefabricated steel Bailey- type bridge located over the Tuga River in Żelichowo, Poland is performed in this paper. Interesting and untypical bridge redevelopment performed made it possible to lift the middle foldable bridge span by approximately 4.0 m concerning the existing state. The paper begins with a survey of literature carried out on the investigations of foldable Bailey-type bridge subject matter. A description of the numerical modelling of foldable prefabricated bridges is performed. The comparison of the proof load test results with the FEM numerical model results has shown very good compatibility. This paper can provide scientists, engineers, and designers the basis for structural analysis in the field of foldable Bailey-type bridge constructions and numerical simulations.

References

70th Infantry Division Association. (n.d.). 70th Infantry Division Association. Retrieved 22 April 2023. www.trailblazersww2.org

Bailey, D. C., Foulkes, R. A., & Digby-Smith, R. (1948). The Bailey bridge and its development. In The civil engineer in war (pp. 373–410). London: Thomas Telford Ltd. https://doi.org/10.1680/ciwv1.45170.0022

Białobrzeski, T. (1978). Mosty składane (Folding bridges). Warsaw, Poland: Wydawnictwa Komunikacji i Łączności.

Biondini, F., & Malerba, P. G. (2016). Structural collapse analysis of a Bailey bridge. In Maintenance, monitoring, safety, risk and resilience of bridges and bridge networks (1 st ed., pp. 407–407). CRC Press. https://doi.org/10.1201/9781315207681-232

Bocian, M., Nikitas, N., Kalybek, M., Kużawa, M., Hawryszków, P., Bień, J., Onysyk, J. & Biliszczuk, J. (2023). Dynamic performance verification of the Rędziński Bridge using portable camera-based vibration monitoring systems. Archives of Civil and Mechanical Engineering, 23(1), Article 40. https://doi.org/10.1007/s43452-022-00582-7

Chahud, E., Borges de Moura Aquino, V., Henriqu de Almeida, D., Luis Christoforo, A., & Antonio Rocco Lahr, F. (2018). Proof load test on bridges and viaducts: A bibliography analysis. International Journal of Materials Engineering, 8(5), 120–127. https://doi.org/10.5923/j.ijme.20180805.06

Chikahiro, Y., Ario, I., Pawlowski, P., Graczykowski, C., Nakazawa, M., Holnicki-Szulc, J., & Ono, S. (2017). Dynamics of the scissors-type Mobile Bridge. Procedia Engineering, 199, 2919–2924. https://doi.org/10.1016/j.proeng.2017.09.339

Chmielewski, R., & Wolniewicz, A. (2017). Classification of the modernized DMS-65 folded bridge structure according to STANAG 2021 requirements. Roads and Bridges – Drogi i Mosty, 16(2), 147–158. https://doi.org/10.7409/rabdim.017.010

Chróścielewski, J., Banaś, A., Malinowski, M., & Miśkiewicz, I. (2012). Mosty tymczasowe typu bailey – MS 22-80 w świetle badań in situ. Archiwum Instytutu Inżynierii Lądowej, (14), 27–36.

Drozdowska, K. (2011). Surfaces of military folding bridge in the aspect of adaptation their structure for civil construction of communication. Logistyka, (6), 725–733.

Drozdowska, K. (2016). Military folding bridges as an alternative to traditional bridge designs including engineering design and an analysis of the capacity of the selected method of the adaptation of the collapsible structure. Problemy Eksploatacji – Maintenance Problems, (3), 53–63. https://yadda.icm. edu.pl/baztech/element/bwmeta1.element.baztech-c13ec8e1-28f9-41d3- 990d-67503a10c303/c/drozdowska_military_3_2016.pdf

Duchaczek, A., & Mańko, Z. (2012). Strength analysis of traverse in DMS-65-type assembled bridge. Zeszyty Naukowe Wsowl, 164(2), 268–281. https://doi.org/10.5604/01.3001.0002.2827

Faber, M. H., Val, D. V, & Stewart, M. G. (2000). Proof load testing for bridge assessment and upgrading. Engineering Structures, 22(12), 1677–1689. https://doi.org/10.1016/S0141-0296(99)00111-X

Filar, L., Kałuza, J., & Wazowski, M. (2017). Bridge load tests in Poland today and tomorrow – The standard and the new ways in measuring and research to ensure transport safety. Procedia Engineering, 192, 183–188. https://doi.org/10.1016/j.proeng.2017.06.032

Gawronek, P., & Makuch, M. (2019). TLS measurement during static load testing of a railway bridge. ISPRS International Journal of Geo-Information, 8(1), Article 44. https://doi.org/10.3390/ijgi8010044

Gopalakrishnan, R. (1999). Restoration of a damaged Bailey suspension bridge. Indian Highways, 27(7), 11–18.

Innocenzi, R. D., Nicoletti, V., Arezzo, D., Carbonari, S., Gara, F., & Dezi, L. (2022). A good practice for the proof testing of cable-stayed bridges. Applied Sciences (Switzerland), 12(7), Article 3547. https://doi.org/10.3390/app12073547

Jarzyna, J. R. (2004). Wiadukty objazdowe z konstrukcji KD-66-C nad torami CMK (By-pass viaducts of KD-66-C structure over CMK tracks). Drogownictwo, (9), 296–300.

Jasiński, M., Łaziński, P., & Piotrowski, D. (2023). The concept of creating digital twins of bridges using load tests. Sensors, 23(17), Article 7349. https://doi.org/10.3390/s23177349

Joiner, C. J. H. (2011). The story of the Bailey bridge. Proceedings of the Institution of Civil Engineers – Engineering History and Heritage, 164(2), 65–72. https://doi.org/10.1680/ehah.10.00002

Kałuziński, D., & Mańko, Z. (2009). Przykłady zastosowań stalowego mostu składanego typu MS-54 jako obiektów objazdowych. Archiwum Instytutu Inżynierii Lądowej, (5), 115–131.

Kamruzzaman, M., & Haque, M. R. (2020). Assessment of dead load deflection of bailey bridges in Bangladesh. In S. Amin (Ed.), IABSE-JSCE Joint Conference on Advances in Bridge Engineering-IV (pp. 306–310). Dhaka, Bangladesh: IABSE.

King, W. S., & Duan, L. (2003). Experimental investigations of Bailey bridges. Journal of Bridge Engineering, 8(5), 334–339. https://doi.org/10.1061/(ASCE)1084-0702(2003)8:5(334)

King, W. S., Wu, S. M., & Duan, L. (2013). Laboratory load tests and analysis of Bailey bridge segments. Journal of Bridge Engineering, 18(10), 957–968. https://doi.org/10.1061/(ASCE)BE.1943-5592.0000444

Kusimba, B. A., Rinzin, T., Banno, Y., & Kinoshita, K. (2022). Condition assessment and adaptation of Bailey bridges as a permanent structures. Applied Sciences, 12(22), Article 11673. https://doi.org/10.3390/app122211673

Lee, J.-W., Lee, J.-Y., Cho, S.-S., Yoo, S.-H., Choi, H.-H., Yun, W.-S., & Kim, T.-Y. (2011). A study on the analysis for the stability of Bailey panel bridge by FEM. Journal of the Korea Institute of Military Science and Technology, 14(3), 335–344. https://doi.org/10.9766/KIMST.2011.14.3.335

Malinowski, M., Banas, A., Jeszka, M., & Sitarski, A. (2018). Imaginative footbridge in Mikolajki, Poland. Stahlbau, 87(3), 248–255. https://doi.org/10.1002/stab.201810582

Marszałek, J., Chmielewski, R., & Wolniewicz, A. (2016). Analysis of the possibilities of adapting the DMS-65 structure for modern transportation infrastructure requirements. Bulletin of the Military University of Technology, 65(3), 75–92. https://doi.org/10.5604/12345865.1223262

Marszałek, J., & Piechota, M. (2014). Simple evaluation of load-carrying capacity of multi-span folding bridges based on floating supports. Bulletin of the Military University of Technology, 63(4), 135–145. https://doi.org/10.5604/12345865.1131468

Marszałek, J., & Wrona, Ł. (2015). Concept project of joining segment, connecting two folding bridge structures MS-54 and widened DMS-65. Bulletin of the Military University of Technology, 64(3), 149–163. https://doi.org/10.5604/12345865.1168846

Mitchell, D. S., Hurd, R. A., & Block, J. B. (1978). The temporary bailey bridge over the derwent river at Hobart, Tasmania. Australian Road Research, 8(3), 3–14.

Mondel, A., & Falkowski, M. (2014). Selected constructions of military bridging systems. Journal of Science of the Gen. Tadeusz Kosciuszko Military Academy of Land Forces, 174(4), 118–130. https://doi.org/10.5604/17318157.1143829

Ostrowska, A., & Chmielewski, R. (2022). Proposal for new technologies of DMS-65 folding bridge construction. Inżynieria Bezpieczeństwa Obiektów Antropogenicznych, (2), 23–31. https://doi.org/10.37105/iboa.134

Ostrowska, A., & Chmielewski, R. (2023). Overview of the organisation and technology of portable panel bridges. Inżynieria Bezpieczeństwa Obiektów Antropogenicznych, (1), 46–52. https://doi.org/10.37105/iboa.167

Owerko, T., Ortyl, Ł., Kocierz, R., Kuras, P., & Salamak, M. (2012). Investigation of displacements of road bridges under test loads using radar interferometry – Case study. In F. Biondini & D. M. Frangopol (Eds.), Bridge Maintenance, Safety, Management, Resilience and Sustainability (pp. 181–188). CRC Press Taylor & Francis Group.

Papavasileiou, V. D., Gantes, C. J., Thanopoulos, P., & Lignos, X. A. (2022). Dynamic response identification of a triple-single Bailey bridge based on vehicle traffic-induced vibration analysis. Infrastructures, 7(10), Article 139. https://doi.org/10.3390/infrastructures7100139

Downloads

Published

25.03.2024

How to Cite

Ambroziak, A., Malinowski, M., & Wałęga, M. (2024). Rebuilding Bailey Bridge to Bridge With Bascule Span – A Case Study. The Baltic Journal of Road and Bridge Engineering, 19(1), 136-161. https://doi.org/10.7250/bjrbe.2024-19.631