Evaluation of the Functionality of Mineral-Resin Pavement

Authors

DOI:

https://doi.org/10.7250/bjrbe.2024-19.633

Keywords:

aggregate, compressive strength, flexural strength, frost resistance, mineral-resin pavement, skid resistance, water permeable surfaces

Abstract

Due to climate change and the recent increase in the number of floods in urbanized areas, there is a growing need for the introduction of new technologies into the road material market. One such technology is water- permeable mineral-resin surfaces, which are becoming increasingly popular. However, due to a lack of clear requirements and solution approval procedures, they are not commonly used in public investments. This paper first describes the materials used for preparing surface samples, including bulk density and granulometric aggregate tests, consistency, colour, and density at 20 °C testing of the hardener and resin. It then outlines the process of sample preparation and provides a brief description of the materials used. The tests conducted on the prepared material samples included flexural and compressive strength tests, frost resistance tests under normal conditions and in the presence of salts, and skid resistance tests. Based on the results obtained, it can be generally concluded that, in the case of permeable surfaces, the type of aggregate is an important factor, as evidenced by the results of the strength tests. The same can be stated about the influence of atmospheric factors. Tests conducted with granite aggregate proved to be more resistant to cyclically changing temperatures, even in the presence of salt.

References

Adresi, M., Yamani, A., Karimaei Tabarestani, M., & Rooholamini, H. (2023). A comprehensive review on pervious concrete. Construction and Building Materials, 407, Article 133308. https://doi.org/10.1016/j.conbuildmat.2023.133308 DOI: https://doi.org/10.1016/j.conbuildmat.2023.133308

Bean, E., Clark, M., & Larson, B. C. (2019). Permeable pavement systems: Technical considerations. Edis, 2019(2), 1–8. https://doi.org/10.32473/edis-ae530-2019 DOI: https://doi.org/10.32473/edis-ae530-2019

Bin, Y., Zhixuan, Z., Na, Z., Linying, Bo, M., Meijie, W., Yujuan, L., Zhiqiang, W., & Chunlin, W. (2021). Preparation method of epoxy resin sand based permeable material. Journal of Physics: Conference Series, 1986(1), Article 012005. https://doi.org/10.1088/1742-6596/1986/1/012005 DOI: https://doi.org/10.1088/1742-6596/1986/1/012005

Cai, X., Huang, W., Liang, J., & Wu, K. (2020). Study of pavement performance of thin-coat waterborne epoxy emulsified asphalt mixture. Frontiers in Materials, 7, 1–10. https://doi.org/10.3389/fmats.2020.00088 DOI: https://doi.org/10.3389/fmats.2020.00088

Ciriminna, D., Ferreri, G. B., Noto, L. V., & Celauro, C. (2022). Numerical comparison of the hydrological response of different permeable pavements in urban area. Sustainability, 14(9), Article 5704. https://doi.org/10.3390/su14095704 DOI: https://doi.org/10.3390/su14095704

Czerwińska, A., & Zalewa, K. (2016). Poprawa parametrów szorstkości nawierzchni – skuteczna i trwała metoda poprawy bezpieczeństwa ruchu drogowego. Drogownictwo, 4, 140–143. https://yadda.icm.edu.pl/ baztech/element/bwmeta1.element.baztech-cd202795-f8bb-4d9b-92e4- 184d471fa8da/c/nr_4_s_140-143_Czerwinska.pdf

Disfani, M. M., Arulrajah, A., Bo, M. W., & Sivakugan, N. (2012). Environmental risks of using recycled crushed glass in road applications. Journal of Cleaner Production, 20(1), 170–179. https://doi.org/10.1016/j.jclepro.2011.07.020 DOI: https://doi.org/10.1016/j.jclepro.2011.07.020

Diyora, R. M., Contractor, M. V., Contractor, N. K., Gajjar, A. K., & Patel, D. B. (2019). Permeable technique for construction of road pavement. International Journal of Engineering Research & Technology, 8(6), 1224–1228. https://www.researchgate.net/publication/338819520_Permeable_ Technique_for_Construction_of_Road_Pavement

Eisenberg, B., Lindow, K. C., & Smith, D. R. (2015). Permeable pavements. American Society of Civil Engineers. https://doi.org/10.1061/9780784413784 DOI: https://doi.org/10.1061/9780784413784

Gardziejczyk, W. (2018). Hałaśliwość nawierzchni drogowych. Oficyna Wydawnicza Politechniki Białostockiej, Białystok. https://pb.edu.pl/oficyna-wydawnicza/wp-content/uploads/sites/4/2022/07/Gardziejczyk_Halasliwosc-nawierzchni-drogowych.pdf

Hammes, G., & Thives, L. P. (2023). Porous asphalt mixture with improved fatigue resistance and stormwater pollutant reduction in urban road pavement. Water (Switzerland), 15(16), Article 2962. https://doi.org/10.3390/w15162962 DOI: https://doi.org/10.3390/w15162962

Hashim, T. M., Ali, A. H., Al-Khafaji, R., Al-Khazraji, A. A., & Zahra Dharb, F. R. (2021). A comparison study between porous and conventional asphalt concrete mixtures. IOP Conference Series: Materials Science and Engineering, 1090(1), Article 012041. https://doi.org/10.1088/1757-899x/1090/1/012041 DOI: https://doi.org/10.1088/1757-899X/1090/1/012041

https://muratordom.pl/ogrod/nawierzchnie/nawierzchnie-przepuszczalne-atrakcyjne-i-ekologiczne-rozwiazanie-do-ogrodu-i-na-podjazd-aa-romr-hDQz-obRj.html. (n.d.).

Ibrahim, A., Mahmoud, E., Yamin, M., & Patibandla, V. C. (2014). Experimental study on Portland cement pervious concrete mechanical and hydrological properties. Construction and Building Materials, 50, 524–529. https://doi.org/10.1016/j.conbuildmat.2013.09.022 DOI: https://doi.org/10.1016/j.conbuildmat.2013.09.022

Jaskula, P., Ejsmont, J., Stienss, M., Ronowski, G., Szydlowski, C., Swieczko-Zurek, B., & Rys, D. (2020). Initial field validation of poroelastic pavement made with crumb rubber, mineral aggregate and highly polymer-modified bitumen. Materials, 13(6), Article 1339. https://doi.org/10.3390/ma13061339 DOI: https://doi.org/10.3390/ma13061339

Kimic, K. (2017). Innowacyjne nawierchnie wodoprzepuszczalne – możliwości zastosowania w historycznych orgodach i parkach publicznych. Przestrzeń Urbanistyka Architektura, 1, 275–293. DOI: https://doi.org/10.4467/00000000PUA.17.017.7135

Krajewski-Wieczorek, E. (2020). Karta produktu TerrWay. https://www.erbis.pl/images/design/karta-produktu-terra-way.pdf

Kriech, A. J., & Osborn, L. V. (2022). Review of the impact of stormwater and leaching from pavements on the environment. Journal of Environmental Management, 319, Article 115687. https://doi.org/10.1016/j.jenvman.2022.115687 DOI: https://doi.org/10.1016/j.jenvman.2022.115687

Krzywiński, K., Sadowski, Ł., & Piechówka-Mielnik, M. (2021). Engineering of composite materials made of epoxy resins modified with recycled fine aggregate. Science and Engineering of Composite Materials, 28(1), 276–284. https://doi.org/10.1515/secm-2021-0029 DOI: https://doi.org/10.1515/secm-2021-0029

Lu, J. X., Yan, X., He, P., & Poon, C. S. (2019). Sustainable design of pervious concrete using waste glass and recycled concrete aggregate. Journal of Cleaner Production, 234, 1102–1112. https://doi.org/10.1016/j.jclepro.2019.06.260 DOI: https://doi.org/10.1016/j.jclepro.2019.06.260

Meng, X., Chi, Y., Jiang, Q., Liu, R., Wu, K., & Li, S. (2019). Experimental investigation on the flexural behavior of pervious concrete beams reinforced with geogrids. Construction and Building Materials, 215, 275–284. https://doi.org/10.1016/j.conbuildmat.2019.04.217 DOI: https://doi.org/10.1016/j.conbuildmat.2019.04.217

Muttuvelu, D. V., Wyke, S., & Vollertsen, J. (2022). Are permeable pavements a sustainable solution? A qualitative study of the usage of permeable pavements. Sustainability (Switzerland), 14(19), Article 12432. https://doi.org/10.3390/su141912432 DOI: https://doi.org/10.3390/su141912432

Perera, S. T. A. M., Zhu, J., Saberian, M., Liu, M., Cameron, D., Maqsood, T., & Li, J. (2021). Application of glass in subsurface pavement layers: A comprehensive review. Sustainability (Switzerland), 13(21), Article 11825. https://doi.org/10.3390/su132111825 DOI: https://doi.org/10.3390/su132111825

Piłat, J., Radziszewski, P., & Król, J. (2015). Technologia materiałów i nawierzchni asfaltowych. https://www.researchgate.net/publication/305816777_ Technologia_materialow_i_nawierzchni_asfaltowych

PN-B-06265:2022-08 Beton – Wymagania, właściwości użytkowe, produkcja i zgodność. (n.d.).

PN-EN 1015-11:2020-04 Metody badań zapraw do murów – Część 11: Określenie wytrzymałości na zginanie i ściskanie stwardniałej zaprawy. (2020).

PN-EN 1097-6:2022-07 Badania mechanicznych i fizycznych właściwości kruszyw – Część 6: Oznaczanie gęstości ziarn i nasiąkliwości. (n.d.).

PN-EN 12371:2010 Metody badań kamienia naturalnego – Oznaczanie mrozoodporności. (n.d.).

PN-EN 13036-4:2011 Drogi samochodowe i lotniskowe – Metody badań – Część 4: Metoda pomiaru oporów poślizgu/poślizgnięcia na powierzchni: Próba wahadła. (n.d.).

PN-EN 14157:2017-11 Metody badań kamienia naturalnego – Oznaczanie odporności na ścieranie. (n.d.).

PN-EN 1436:2018-02 Materiały do poziomego oznakowania dróg – Wymagania dotyczące poziomych oznakowań dróg dla użytkowników oraz metody badań. (n.d.).

PN-EN 206+A2:2021-08 Beton – Wymagania, właściwości użytkowe, produkcja i zgodność. (n.d.).

PN-EN ISO 2811-1:2023-03 Farby i lakiery – Oznaczanie gęstości – Część 1: Metoda piknometryczna. (2023).

Pożarycki, A. (2019). Badania właściwości przeciwpoślizgowych nawierzchni urządzeniami do testów w trybie ciągłym. Drogownictwo, 9, 250–257. https://yadda.icm.edu.pl/baztech/element/bwmeta1.element.baztech-aca4c99b-fae8-4fa6-894c-644556054742

Pradoto, R., Puri, E., Hadinata, T., Rahman, Q. D., & Az-zuchruf, R. M. (2019). Improving strength of porous asphalt: A nano material experimental approach. Jurnal Rekayasa Sipil (JRS-Unand), 15(2), 75–89. https://doi.org/10.25077/jrs.15.2.75-89.2019 DOI: https://doi.org/10.25077/jrs.15.2.75-89.2019

Radziszewski, P., Nazarko, J., Vilutiene, T., Dębkowska, K., Ejdys, J., Gudanowska, A., Halicka, K., Kilon, J., Kononiuk, A., Kowalski, K. J., Król, J. B., Nazarko, Ł., & Sarnowski, M. (2016). Future trends in road pavement technologies development in the context of environmental protection. Baltic Journal of Road and Bridge Engineering, 11(2), 160–168. https://doi.org/10.3846/bjrbe.2016.19 DOI: https://doi.org/10.3846/bjrbe.2016.19

Scholz, M., & Grabowiecki, P. (2007). Review of permeable pavement systems. Building and Environment, 42(11), 3830–3836. https://doi.org/10.1016/j.buildenv.2006.11.016 DOI: https://doi.org/10.1016/j.buildenv.2006.11.016

Sha, A., Liu, Z., Jiang, W., Qi, L., Hu, L., Jiao, W., & Barbieri, D. M. (2021). Advances and development trends in eco-friendly pavements. Journal of Road Engineering, 1, 1–42. https://doi.org/10.1016/j.jreng.2021.12.002 DOI: https://doi.org/10.1016/j.jreng.2021.12.002

Siedlecka, M., & Suchocka, M. (2017). Wodoprzepuszczalne nawierzchnie a zrównowa ż ony rozwój terenów miejskich. Drogownictwo, 2, 60–67. https:// yadda.icm.edu.pl/baztech/element/bwmeta1.element.baztech-b4b30ff2-2bd9-46c4-8d53-7566aff4d113

Slebi-Acevedo, C. J., Lastra-González, P., Indacoechea-Vega, I., & Castro-Fresno, D. (2023). Development of improved porous asphalt mixtures with high porosity levels. Developments in the Built Environment, 16, Article 100286. https://doi.org/10.1016/j.dibe.2023.100286 DOI: https://doi.org/10.1016/j.dibe.2023.100286

Sumanasooriya, M. S., & Neithalath, N. (2011). Pore structure features of pervious concretes proportioned for desired porosities and their performance prediction. Cement and Concrete Composites, 33(8), 778–787. https://doi.org/10.1016/j.cemconcomp.2011.06.002 DOI: https://doi.org/10.1016/j.cemconcomp.2011.06.002

Tjaronge, M. W., Fakhruddin, Caronge, M. A., Zaifullah, M. H., & Rahmat, M. F. (2020). Preliminary study on compressive strength of porous asphalt containing modified buton asphalt, waste plastic and limestone powder. IOP Conference Series: Materials Science and Engineering, 875(1), Article 012032. https://doi.org/10.1088/1757-899X/875/1/012032 DOI: https://doi.org/10.1088/1757-899X/875/1/012032

Xiang, Q., & Xiao, F. (2020). Applications of epoxy materials in pavement engineering. Construction and Building Materials, 235, Article 117529. https://doi.org/10.1016/j.conbuildmat.2019.117529 DOI: https://doi.org/10.1016/j.conbuildmat.2019.117529

Xie, N., Akin, M., & Shi, X. (2019). Permeable concrete pavements: A review of environmental benefits and durability. Journal of Cleaner Production, 210, 1605–1621. https://doi.org/10.1016/j.jclepro.2018.11.134 DOI: https://doi.org/10.1016/j.jclepro.2018.11.134

Zhang, K., & Kevern, J. (2021). Review of porous asphalt pavements in cold regions: the state of practice and case study repository in design, construction, and maintenance. Journal of Infrastructure Preservation and Resilience, 2(1), Article 4. https://doi.org/10.1186/s43065-021-00017-2 DOI: https://doi.org/10.1186/s43065-021-00017-2

Downloads

Published

28.06.2024

How to Cite

Bednarek, Łukasz, & Fialkouskaya, N. (2024). Evaluation of the Functionality of Mineral-Resin Pavement. The Baltic Journal of Road and Bridge Engineering, 19(2), 1-22. https://doi.org/10.7250/bjrbe.2024-19.633