Estimating the Bitumen Ratio to be Used in Highway Asphalt Concrete by Machine Learning
DOI:
https://doi.org/10.7250/bjrbe.2024-19.634Keywords:
asphalt concrete, bitumen ratio, highway, road, machine learning, Marshall methodAbstract
Hot mix asphalt, which is frequently used in road pavements, contains bitumen in certain proportions. This bitumen ratio varies according to the layers in the road pavements. The bitumen ratio in each pavement is usually estimated by the Marshall design method. However, this method is costly as well as time-consuming. In this study, the Naive Bayes method, which is a machine learning algorithm, was used to estimate the bitumen ratio practically. In the study, a total of 102 asphalt concrete designs were examined, which were taken from the wearing course, binder course, and asphalt concrete base course and stone mastic asphalt wearing course layers. Each road pavement layer was divided into three different classes according to the bitumen ratios and the algorithm was trained with machine learning. Then the bitumen ratio was estimated for each data set. As a result of this process, the bitumen ratios of the layers were estimated with an accuracy between 75% and 90%. In this study, it was revealed that the bitumen ratio in the road pavement layers could be estimated practically and economically.
References
Aljassar, A. H., Ali, M. A., & Alzaabi, A. (2002). Modeling Marshall test results for optimum asphalt-concrete mix design. Kuwait J Sci Engrg, 29(1), 181–195.
Asorhakt, U. (1993). Mix design methods for asphalt concrete and other hot-mix types. Asphalt Institute.
Atmaca, K. (2020, January 10). Naive Bayesian algorithm. https://kenanatmaca.com/naive-bayesian-algoritmasi/
Baldo, N., Manthos, E., & Pasetto, M. (2018). Analysis of the mechanical behaviour of asphalt concretes using artificial neural networks. Advances in Civil Engineering, 2018, Article 1650945. https://doi.org/10.1155/2018/1650945 DOI: https://doi.org/10.1155/2018/1650945
Barczyszyn, G. L., De Camenar, L. M. O., De Do Nascimento, D. F., Kozievitch, N. P., Da Silva, R. D., Almeida, L. D. A., De Santi, J., & Minetto, R. (2018). A collaborative system for suitable wheelchair route planning. ACM Transactions on Accessible Computing, 11(3), Article 18. https://doi.org/10.1145/3237186 DOI: https://doi.org/10.1145/3237186
Behnood, A. (2019). Application of rejuvenators to improve the rheological and mechanical properties of asphalt binders and mixtures: A review. Journal of Cleaner Production, 231, 171–182. https://doi.org/10.1016/J.JCLEPRO.2019.05.209 DOI: https://doi.org/10.1016/j.jclepro.2019.05.209
Bituminous Mixtures Laboratory Handbook. (2021). ttps://www.kgm.gov.tr/SiteCollectionDocuments/KGMdocuments/Baskanliklar/BaskanliklarTekni-kArastirma/BitumluKarisimlarLaboratuvarElKitabi.pdf
Dias, J. L. F., Picado-Santos, L. G., & Capitão, S. D. (2014). Mechanical performance of dry process fine crumb rubber asphalt mixtures placed on the Portuguese road network. Construction and Building Materials, 73, 247–254. https://doi.org/10.1016/j.conbuildmat.2014.09.110 DOI: https://doi.org/10.1016/j.conbuildmat.2014.09.110
Gandhi, T., Rogers, W., & Amirkhanian, S. (2010). Laboratory evaluation of warm mix asphalt ageing characteristics. International Journal of Pavement Engineering, 11(2), 133–142. https://doi.org/10.1080/10298430903033339 DOI: https://doi.org/10.1080/10298430903033339
García, A., Norambuena-Contreras, J., Bueno, M., & Partl, M. N. (2014). Influence of steel wool fibers on the mechanical, termal, and healing properties of dense asphalt concrete. ASTM International West Conshohocken, PN, USA. DOI: https://doi.org/10.1520/JTE20130197
Goel, G., Sachdeva, S. N., & Pal, M. (2022). Modelling of tensile strength ratio of bituminous concrete mixes using support vector machines and M5 model tree. International Journal of Pavement Research and Technology, 15(1), 86–97. https://doi.org/10.1007/s42947-021-00013-5 DOI: https://doi.org/10.1007/s42947-021-00013-5
Gomaa, A. E. (2014). Marshall test results prediction using artificial neural network [MSc thesis, Arab Academy for Science and Technology], Cairo, Egypt.
Hamzah, M. O., Golchin, B., & Tye, C. T. (2013). Determination of the optimum binder content of warm mix asphalt incorporating Rediset using response surface method. Construction and Building Materials, 47, 1328–1336. https://doi.org/10.1016/j.conbuildmat.2013.06.023 DOI: https://doi.org/10.1016/j.conbuildmat.2013.06.023
Kandhal, P. S., & Cross, S. A. (1993). Effect of aggregate gradation on measured asphalt content. National Center for Asphalt Technology, Washington, DC.
Kuşkapan, E., Campisi, T., De Cet, G., Vianello, C., & Çodur, M. Y. (2023). Examination of the effects of the pandemic process on the e-scooter usage behaviours of individuals with machine learning. Transactions on Transport Sciences, 14(3), 25–31. https://doi.org/10.5507/tots.2023.016 DOI: https://doi.org/10.5507/tots.2023.016
Kuşkapan, E., & Çodur, M. Y. (2021). Examination of aircraft accidents that occurred in the last 20 years in the world. Düzce Üniversitesi Bilim ve Teknoloji Dergisi, 9(1), 174–188. https://doi.org/10.29130/dubited.754339 DOI: https://doi.org/10.29130/dubited.754339
Leon, L., Smith, J., & Frank, A. (2023). Intermediate temperature fracture resistance of stone matrix asphalt containing untreated recycled concrete aggregate. The Baltic Journal of Road and Bridge Engineering, 18(1), 94–121. https://doi.org/10.7250/bjrbe.2023-18.590 DOI: https://doi.org/10.7250/bjrbe.2023-18.590
Lesueur, D. (2009). The colloidal structure of bitumen: Consequences on the rheology and on the mechanisms of bitumen modification. Advances in Colloid and Interface Science, 145(1–2), 42–82. https://doi.org/10.1016/J.CIS.2008.08.011 DOI: https://doi.org/10.1016/j.cis.2008.08.011
Liu, Q. T., & Wu, S. P. (2014). Effects of steel wool distribution on properties of porous asphalt concrete. Key Engineering Materials, 599, 150–154. https://doi.org/10.4028/www.scientific.net/KEM.599.150 DOI: https://doi.org/10.4028/www.scientific.net/KEM.599.150
Liu, W. F., Li, H. M., & Tian, B. P. (2011). Research on designing optimum asphalt content of asphalt mixture by calculation and experimental method. Applied Mechanics and Materials, 97–98, 23–27. https://doi.org/10.4028/www.scientific.net/AMM.97-98.23 DOI: https://doi.org/10.4028/www.scientific.net/AMM.97-98.23
McHugh, M. L. (2012). Interrater reliability: the kappa statistic. Biochemia Medica, 22(3), 276–282. https://doi.org/10.11613/BM.2012.031 DOI: https://doi.org/10.11613/BM.2012.031
Morova, N., Sargin, Ş., Terzi, S., Saltan, M., & Serin, S. (2012). Modeling Marshall Stability of light asphalt concretes fabricated using expanded clay aggregate with Artificial Neural Networks. 2012 International Symposium on Innovations in Intelligent Systems and Applications, Trabzon, Turkey, 1–4. https://doi.org/10.1109/INISTA.2012.6246946 DOI: https://doi.org/10.1109/INISTA.2012.6246946
Mousa, K. M., Abdelwahab, H. T., & Hozayen, H. A. (2021). Models for estimating optimum asphalt content from aggregate gradation. Proceedings of the Institution of Civil Engineers-Construction Materials, 174(2), 69–74. https://doi.org/10.1680/jcoma.18.00035 DOI: https://doi.org/10.1680/jcoma.18.00035
MS-2 Asphalt Mix Design Methods. (2015). https://www.researchgate.net/profile/Yasir_Jebur/post/what_are_the_limits_of_thicknesses_of_asphalt_ wearing_or_surface_binder_layer_base_materials_asphalt_base_and_the_ full_depth_asphalt_layer/attachment/5c13e9eccfe4a76455091d0d/AS:7037 93855483904@1544808939808/download/Asphalt-Institute-MS2-7th-Edi- tion-Asphalt-Institute-Mix-Design.pdf
Othman, K. (2022). Prediction of the hot asphalt mix properties using deep neural networks. Beni-Suef University Journal of Basic and Applied Sciences, 11(1), Article 40. https://doi.org/10.1186/s43088-022-00221-3 DOI: https://doi.org/10.1186/s43088-022-00221-3
Ozturk, H. I., Saglik, A., Demir, B., & Gungor, A. G. (2016). An artificial neural network base prediction model and sensitivity analysis for marshall mix design. Proceedings of the 6th Eurasphalt & Eurobitume Congress, Prague, Czech Republic. https://www.researchgate.net/publication/312336678_An_ artificial_neural_network_base_prediction_model_and_sensitivity_analysis_ for_marshall_mix_design DOI: https://doi.org/10.14311/EE.2016.224
Pasandín, A. R., & Pérez, I. (2015). Overview of bituminous mixtures made with recycled concrete aggregates. Construction and Building Materials, 74, 151–161. https://doi.org/10.1016/j.conbuildmat.2014.10.035 DOI: https://doi.org/10.1016/j.conbuildmat.2014.10.035
Punith, V. S., Xiao, F., Putman, B., & Amirkhanian, S. N. (2012). Effects of long-term aging on moisture sensitivity of foamed WMA mixtures containing moist aggregates. Materials and Structures, 45, 251–264. https://doi.org/10.1617/s11527-011-9763-4 DOI: https://doi.org/10.1617/s11527-011-9763-4
Rakaraddi, P. G., & Gomarsi, V. (2015). Establishing relationship between CBR with different soil properties. International Journal of Research in Engineering and Technology, 4(2), 182–188. https://doi.org/10.15623/ijret.2015.0402023 DOI: https://doi.org/10.15623/ijret.2015.0402023
Reddy, T. C. S. (2018). Predicting the strength properties of slurry infiltrated fibrous concrete using artificial neural network. Frontiers of Structural and Civil Engineering, 12(4), 490–503. https://doi.org/10.1007/s11709-017-0445-3 DOI: https://doi.org/10.1007/s11709-017-0445-3
Sanchez-Alonso, E., Vega-Zamanillo, A., Castro-Fresno, D., & DelRio-Prat, M. (2011). Evaluation of compactability and mechanical properties of bituminous mixes with warm additives. Construction and Building Materials, 25(5), 2304–2311. https://doi.org/10.1016/j.conbuildmat.2010.11.024 DOI: https://doi.org/10.1016/j.conbuildmat.2010.11.024
Tapkın, S., Çevik, A., & Uşar, Ü. (2010). Prediction of Marshall test results for polypropylene modified dense bituminous mixtures using neural networks. Expert Systems with Applications, 37(6), 4660–4670. https://doi.org/10.1016/j.eswa.2009.12.042 DOI: https://doi.org/10.1016/j.eswa.2009.12.042
Wang, L., Gong, H., Hou, Y., Shu, X., & Huang, B. (2017). Advances in pavement materials, design, characterisation, and simulation. Road Materials and Pavement Design, 18(sup3), 1–11. https://doi.org/10.1080/14680629.2017.1329856 DOI: https://doi.org/10.1080/14680629.2017.1329856
Zaumanis, M., Mallick, R. B., & Frank, R. (2016). 100% hot mix asphalt recycling: challenges and benefits. Transportation Research Procedia, 14, 3493–3502. https://doi.org/10.1016/j.trpro.2016.05.315 DOI: https://doi.org/10.1016/j.trpro.2016.05.315
Zhou, Z. H. (2016). Learnware: on the future of machine learning. Frontiers of Computer Sciences, 10, 589–590. https://doi.org/10.1007/s11704-016-6906-3 DOI: https://doi.org/10.1007/s11704-016-6906-3
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Muhammed Yasin Çodur, Halis Bahadir Kasil, Emre Kuşkapan (Author)
This work is licensed under a Creative Commons Attribution 4.0 International License.