Mechanical Performance of Steel- Slag and Lime-Modified Asphalt Mixture: A Response Surface Approach

Authors

DOI:

https://doi.org/10.7250/bjrbe.2024-19.635

Keywords:

asphalt mixtures, ITS, lime, optimization, Resilient Modulus, RSM, steel slag, stiffness

Abstract

The Response Surface Methodology (RSM) is a collection of methods used to create various experiment designs, determine relationships between experimental variables and responses, and use these relationships to identify the ideal conditions. This study uses RSM to forecast the mechanical characteristics of mixtures modified with steel slag and lime. Using the Box Behnken Design (BBD) method for the mix proportion, steel slag (0–100%), lime (0–4%), and bitumen content (4–8%) were considered independent variables, while the responses were the resilient modulus, indirect tensile strength, flexural stiffness, and compressive strength. Analysis of variance showed that the steel slag was the most influencing factor for the flexural stiffness property of the steel-slag and lime-modified asphalt mixtures. Also, the regression coefficient (R2) of 0.9214, 0.8380, 0.7412, and 0.8266 was obtained for the stiffness, Mr, compressive strength, and ITS, respectively. Some interaction effects on the responses were found between the steel slag and lime. The optimization findings show that 25.01% steel slag, 2.43% lime, and 5.51% bitumen content are the best values to satisfy the design criteria. The optimized mixture design will offer a cost-effective and environmentally friendly solution, promoting resource conservation and sustainable development in the construction industry.

References

AASHTO T 322. (2007). Standard method of test for determining the creep compliance and strength of hot mix asphalt (HMA) using the indirect tensile test device. American Association of State Highway and Transportation Officials (AASHTO). https://civilnode.com/download- standard/10654392138908/aashto-t-322-standard-method-of-test-for-determining-the-creep-compliance-and-strength-of-hot

AASHTO T 321. (2022). Standard method of test for determining the fatigue life of compacted asphalt mixtures subjected to repeated flexural bending. American Association of State Highway and Transportation Officials (AASHTO).

Akadiri, P. O., Chinyio, E. A., & Olomolaiye, P. O. (2012). Design of a sustainable building: A conceptual framework for implementing sustainability in the building sector. Buildings, 2(2), 126–152. https://doi.org/10.3390/buildings2020126 DOI: https://doi.org/10.3390/buildings2020126

Aladegboye, O. J., Oguntayo, O. D., Al-Ihekwaba, E., Daniel, T. E., Chiadighikaobi, P. C., & Ng’andu, P. (2022). Evaluation of volumetric properties of cassava peel ash modified asphalt mixtures. Civil Engineering Journal, 8(10), 2110–2124. https://doi.org/10.28991/CEJ-2022-08-10-07 DOI: https://doi.org/10.28991/CEJ-2022-08-10-07

Albayati, A., Wang, Y., & Haynes, J. (2022). Size effect of hydrated lime on the mechanical performance of asphalt concrete. Materials, 15(10), Article 3715. https://doi.org/10.3390/ma15103715 DOI: https://doi.org/10.3390/ma15103715

Alemu, G. M., Melese, D. T., Mahdi, T. W., & Negesa, A. B. (2023). Combined performance of polyethylene terephthalate waste plastic polymer and crumb rubber in modifying properties of hot mix asphalt. Advances in Materials Science and Engineering, 2023, Article 6320490. https://doi.org/10.1155/2023/6320490 DOI: https://doi.org/10.1155/2023/6320490

Alnadish, A. M., Aman, M. Y., Katman, H. Y. B., & Ibrahim, M. R. (2022). Laboratory evaluation of fiber-modified asphalt mixtures incorporating steel slag aggregates. CMC-Computers Materials & Continua, 70(3), 5967–5990. https://doi.org/10.32604/cmc.2022.017387 DOI: https://doi.org/10.32604/cmc.2022.017387

ASTM D1074-02. (2017). Standard test method for compressive strength of bituminous mixtures. American Society for Testing and Materials.

ASTM D1559. (1989). Resistance to plastic flow of bituminous mixtures using Marshall apparatus.

Bala, N., Napiah, M., & Kamaruddin, I. (2017). Application of response surface methodology for mix design optimisation of nanocomposite modified. International Journal of GEOMATE, 13(39), 237–244. https://doi.org/10.21660/2017.39.58554 DOI: https://doi.org/10.21660/2017.39.58554

Bala, N., Kamaruddin, I., Napiah, M., & Danlami, N. (2018). Polyethylene polymer modified bitumen: Process optimisation and modeling of linear viscoelastic rheological properties using response surface methodology. Journal of Engineering and Applied Sciences, 13(9), 2818–2827.

Braimah, M. N., Anozie, A. N., & Odejobi, O. J. (2016). Utilisation of response surface methodology (RSM) in the optimisation of crude oil refinery process, New Port-Harcourt refinery, Nigeria. Journal of Multidisciplinary Engineering Science and Technology (JMEST), 3(3), 2458–9403. https://www.jmest.org/wp-content/uploads/JMESTN42351475.pdf

Dang, D. T., Nguyen, M. T., Nguyen, T. P., Isawa, T., Ta, Y., & Sato, R. (2022). Mechanical properties of steel slag replaced mineral aggregate for road base/sub-base application based Vietnam and Japan standard. Environmental Science and Pollution Research, 29(28), 42067–42073. https://doi.org/10.1007/s11356-021-16706-0 DOI: https://doi.org/10.1007/s11356-021-16706-0

Doust, A. M., Rahimi, M., & Feyzi, M. (2016). An optimisation study by response surface methodology (RSM) on viscosity reduction of residue fuel oil exposed ultrasonic waves and solvent injection. Iranian Journal of Chemical Engineering, 13(1), 3–19. https://www.ijche.com/article_15369.html

Gao, D., Wang, F. P., Wang, Y. T., & Zeng, Y. N. (2020). Sustainable utilisation of steel slag from traditional industry and agriculture to catalysis. Sustainability (Switzerland), 12(21), Article 9295. https://doi.org/10.3390/su12219295 DOI: https://doi.org/10.3390/su12219295

Gaus, A., Tjaronge, M. W., Ali, N., & Djamaluddin, R. (2015). Compressive strength of asphalt concrete binder course (AC-BC) mixture using buton granular asphalt (BGA). Procedia Engineering, 125, 657–662. https://doi.org/10.1016/j.proeng.2015.11.097 DOI: https://doi.org/10.1016/j.proeng.2015.11.097

Gu, X., Yu, B., Dong, Q., & Deng, Y. (2018). Application of secondary steel slag in subgrade: Performance evaluation and enhancement. Journal of Cleaner Production, 181(1), 102–108. https://doi.org/10.1016/j.jclepro.2018.01.172 DOI: https://doi.org/10.1016/j.jclepro.2018.01.172

Hainin, M. R., Aziz, M. A., Ali, Z., Jaya, R. P., El-Sergany, M. M., & Yaacoba, H. (2015). Steel slag as a road construction material. Jurnal Teknologi, 73(4), 33–38. https://doi.org/10.11113/jt.v73.4282 DOI: https://doi.org/10.11113/jt.v73.4282

Hamzah, M. O., & Omranian, S. R. (2016). Effects of extended short-term aging duration on asphalt binder behaviour at high temperatures. The Baltic Journal of Road and Bridge Engineering, 11(4), 302–312. https://doi.org/10.3846/bjrbe.2016.35 DOI: https://doi.org/10.3846/bjrbe.2016.35

Harrou, A., Gharibi, E., Nasri, H., Fagel, N., & El Ouahabi, M. (2020). Physico-mechanical properties of phosphogypsum and black steel slag as aggregate for bentonite-lime based materials. Materials Today: Proceedings, 31(Sup.1), S51–S55. https://doi.org/10.1016/j.matpr.2020.05.819 DOI: https://doi.org/10.1016/j.matpr.2020.05.819

Hoseinpour-Lonbar, M., Alavi, M. Z., & Palassi, M. (2020). Selection of asphalt mix with optimal fracture properties at intermediate temperature using Taguchi method for design of experiment. Construction and Building Materials, 262, 120601. DOI: https://doi.org/10.1016/j.conbuildmat.2020.120601

Iwański, M. M. (2020). Effect of hydrated lime on indirect tensile stiffness modulus of asphalt concrete produced in half-warm mix technology. Materials, 13(21), Article 4731. https://doi.org/10.3390/ma13214731 DOI: https://doi.org/10.3390/ma13214731

Jiang, Y., Ling, T. C., Shi, C., & Pan, S. Y. (2018). Characteristics of steel slags and their use in cement and concrete – A review. Resources, Conservation and Recycling, 136, 187–197. https://doi.org/10.1016/j.resconrec.2018.04.023 DOI: https://doi.org/10.1016/j.resconrec.2018.04.023

Likitlersuang, S., & Chompoorat, T. (2016). Laboratory investigation of the performances of cement and fly ash modified asphalt concrete mixtures. International Journal of Pavement Research and Technology, 9(5), 337–344. https://doi.org/10.1016/j.ijprt.2016.08.002 DOI: https://doi.org/10.1016/j.ijprt.2016.08.002

Manzoor, S. O., & Yousuf, A. (2020). Stabilisation of soils with lime: A review. Journal of Materials and Environmental Science, 11(9), 1538–1551. https://www.jmaterenvironsci.com/Document/vol11/ vol11_N9/JMES-2020-11133-Manzoor.pdf

Mohammed, A. A., & Elsageer, M. A. A. (2018). The effect of adding steel slag and lime on the engineering properties of a sandy soil. AIJR Proceedings 4(23), 563–570. https://doi.org/10.21467/proceedings.4.23 DOI: https://doi.org/10.21467/proceedings.4.23

Nassar, A., Thom, N., & Parry, T. (2016). Optimising the mix design of cold bitumen emulsion mixtures using response surface methodology. Construction and Building Materials, 1(1), 1–39. https://doi.org/10.1016/j.conbuildmat.2015.12.073 DOI: https://doi.org/10.1016/j.conbuildmat.2015.12.073

Noori, G., Faqemahmood, L., Mohammed, S., & Salih, A. (2020). Modeling and statistical variations of long term of mechanical properties of concrete modified with waste steel slag. The Journal of Duhok University, 23(2), 1–14. https://doi.org/10.26682/csjuod.2020.23.2.1 DOI: https://doi.org/10.26682/csjuod.2020.23.2.1

O’Connor, J., Nguyen, T. B. T., Honeyands, T., Monaghan, B., O’Dea, D., Rinklebe, J., Vinu, A., Hoang, S. A., Singh, G., Kirkham, M. B., & Bolan, N. (2021). Production, characterisation, utilisation, and beneficial soil application of steel slag: A review. Journal of Hazardous Materials, 419, Article 126478. https://doi.org/10.1016/j.jhazmat.2021.126478 DOI: https://doi.org/10.1016/j.jhazmat.2021.126478

Oguntayo, D., Ogundipe, M., Aluko, O., Oguntayo, B., Rahmon, R., & Ogundipe, O. (2023a). Nigerian steel-slag for road works: Physical, mineralogy and micro-structural characterization. 2023 International Conference on Science, Engineering and Business for Sustainable Development Goals (SEB-SDG), 1, Omu-Aran, Nigeria, 1–4. https://doi.org/10.1109/SEB-SDG57117.2023.10124590 DOI: https://doi.org/10.1109/SEB-SDG57117.2023.10124590

Oguntayo, D., Ogundipe, M., Aladegboye, O., Ogunkunbi, G., Babatunde, Y., & Aransiola, O. (2023b). Performance evaluation of hospital waste ash-modified asphalt mixtures. Advances in Civil Engineering, 2023, Article 6880766. https://doi.org/10.1155/2023/6880766

Oguntayo, D., Ogundipe, O., Daikwo, J., Adeyemi, F., & Aladegboye, O. (2023c). Moisture susceptibility of waste ceramic tiles modified asphalt mixtures. Research on Engineering Structures and Materials, https://doi.org/10.17515/resm2023.798ma0704tn DOI: https://doi.org/10.1155/2023/6880766

Oguntayo, D., Ogundipe, O., Aluko, O., & Babatunde, Y. (2024). RSM based modelling and optimization of Marshall properties of steel-slag and lime-modified asphalt mixtures. Research on Engineering Structures and Materials, 1–20. https://doi.org/10.17515/resm2024.83ma1117rs DOI: https://doi.org/10.17515/resm2024.83ma1117rs

Oluwasola, E. A., Hainin, M. R., Aziz, M., Maniruzzaman, A., Singh, M., & Singh, S. (2015). Effect of aging on the resilient modulus of stone mastic asphalt incorporating electric arc furnace steel slag and copper mine tailings. InCIEC 2014, Singapore, 1199–1208.

https://doi.org/10.1007/978-981-287-290-6_106 DOI: https://doi.org/10.1007/978-981-287-290-6_106

Pasetto, M., Baliello, A., & Giacomello, G. (2023). The use of steel slags in asphalt pavements: A state-of-the-art review. Sustainability, 15(11), Article 8817. https://doi.org/10.3390/su15118817 DOI: https://doi.org/10.3390/su15118817

Pinheiro, C., Rios, S., Viana da Fonseca, A., Fernández-Jiménez, A., & Cristelo, N. (2020). Application of the response surface method to optimise alkali activated cements based on low-reactivity ladle furnace slag. Construction and Building Materials, 264, Article 120271. https://doi.org/10.1016/j.conbuildmat.2020.120271 DOI: https://doi.org/10.1016/j.conbuildmat.2020.120271

Raissi, S., & Farsani, R. E. (2009). Statistical process optimisation through multi-response surface methodology. World Academy of Science, Engineering and Technology, 3(3), 280–284. https://www.researchgate. net/publication/289199318_Statistical_process_optimization_Through_ multi-response_surface_methodology

Sas, W., Głuchowski, A., Radziemska, M., Dziecioł, J., & Szymański, A. (2015). Environmental and geotechnical assessment of the steel slags as a material for road structure. Materials, 8(8), 4857–4875. https://doi.org/10.3390/ma8084857 DOI: https://doi.org/10.3390/ma8084857

Singh, B., Prasad, D., & Kant, R. R. (2021). Effect of lime filler on RCA incorporated bituminous mixture. Cleaner Engineering and Technology, 4, Article 100166. https://doi.org/10.1016/j.clet.2021.100166 DOI: https://doi.org/10.1016/j.clet.2021.100166

Subathra Devi, V., Gnanavel, B. K., & Murthi, P. (2015). Experimental investigation on the mechanical properties of steel slag ceramic concrete. International Journal of ChemTech Research, 8(8), 152–160. https://www.sphinxsai.com/2015/ch_vol8_no8/1/(152-160)V8N8CT.pdf

Taherkhani, H., & Noorian, F. (2020). Investigating the Marshall and volumetric properties of asphalt concrete containing reclaimed asphalt pavement and waste oils using response surface methodology. Civil Engineering Infrastructures Journal, 53(2), 241–258. https://doi.org/10.22059/ceij.2020.281338.1582

Wang, F. P., Liu, T. J., Cai, S., Gao, D., Yu, Q., Wang, X. M., Wang, Y. T., Zeng, Y. N., & Li, J. G. (2021). A review of modified steel slag application in catalytic pyrolysis, organic degradation, electrocatalysis, photocatalysis, transesterification and carbon capture and storage. Applied Sciences (Switzerland), 11(10), Article 4539. https://doi.org/10.3390/app11104539 DOI: https://doi.org/10.3390/app11104539

Wu, J., Liu, Q., Deng, Y., Yu, X., Feng, Q., & Yan, C. (2019). Expansive soil modified by waste steel slag and its application in subbase layer of highways. Soils and Foundations, 59(4), 955–965. https://doi.org/10.1016/j.sandf.2019.03.009 DOI: https://doi.org/10.1016/j.sandf.2019.03.009

Zangena, S. A. (2019). Performance of asphalt mixture with nanoparticles. In Nanotechnology in eco-efficient construction (pp. 165–186). Woodhead Publishing. https://doi.org/10.1016/B978-0-08-102641-0.00008-6 DOI: https://doi.org/10.1016/B978-0-08-102641-0.00008-6

Zeng, M., Pan, H., Tian, W., Li, J., & Zhou, J. (2020). Properties of asphalt binder and mixture containing bioasphalt derived from castor. In Bio-Based Materials and Biotechnologies for Eco-Efficient Construction (pp. 81–102). Woodhead Publishing. https://doi.org/10.1016/B978-0-12-819481-2.00005-2 DOI: https://doi.org/10.1016/B978-0-12-819481-2.00005-2

Zhang, L., & Zhai, J. (2020). Application of response surface methodology to optimise alkali-activated slag mortar with limestone powder and glass powder. Structural Concrete, 22(S1), E430–E441. https://doi.org/10.1002/suco.202000018 DOI: https://doi.org/10.1002/suco.202000018

Zhang, X. (2019). Study on the application and material properties of lime-soil compaction pile modified by steel slag. IOP Conference Series: Earth and Environmental Science PAPER, 310(4), Article 042063. https://doi.org/10.1088/1755-1315/310/4/042063 DOI: https://doi.org/10.1088/1755-1315/310/4/042063

Downloads

Published

28.06.2024

How to Cite

Oguntayo, D., Ogundipe, O., Aluko, O., & Aransiola, O. (2024). Mechanical Performance of Steel- Slag and Lime-Modified Asphalt Mixture: A Response Surface Approach. The Baltic Journal of Road and Bridge Engineering, 19(2), 43-65. https://doi.org/10.7250/bjrbe.2024-19.635