Performance of Laboratory Designed Permeable Asphalt Mixtures

Authors

DOI:

https://doi.org/10.7250/bjrbe.2024-19.639

Keywords:

asphalt pavement, permeability, permeable pavement, physical properties of asphalt, porous asphalt, sustainable pavement

Abstract

Permeable asphalt pavement is one of the sustainable solutions to remove water from road surfaces. The aim of the research is to analyse the performance of permeable asphalt mixtures depending on the different nominal maximum size and, as a result, to determine the minimum air voids content, which ensures that the asphalt pavement is permeable. To analyse the permeability of asphalt mixtures, ten porous asphalt mixtures with different air voids content and nominal maximum size were designed and tested in terms of air voids content, horizontal and vertical water permeability, water sensitivity, water sensitivity after ultraviolet radiation and mass loss. The results showed that the PA 16 mixture, designed according to the technical requirements TRA ASPHALT 08, was the most porous and permeable mixture, while the modified PA 8 mixture (PA 8_M2) had the lowest air voids content and permeability. Based on the importance of vertical water permeability (0.5%), mass loss (0.3%), water sensitivity (ITSR) (0.2%), the Simple Additive Weighting (SAW) and Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) methods showed that PA 11 (0.729 and 0.745) and PA 16 (0.684 and 0.631) had the highest overall weights.

References

Aboufoul, M., & Garcia, A. (2017). Factors affecting hydraulic conductivity of asphalt mixture. Materials and Structures, 50(2), Article 116. https://doi.org/10.1617/s11527-016-0982-6 DOI: https://doi.org/10.1617/s11527-016-0982-6

Afonso, M. L., Dinis-Almeida, M., & Fael, C. S. (2017). Study of the porous asphalt performance with cellulosic fibres. Construction and Building Materials, 135, 104–111. https://doi.org/10.1016/j.conbuildmat.2016.12.222 DOI: https://doi.org/10.1016/j.conbuildmat.2016.12.222

Almeida, A., & Picado-Santos, L. (2022). Asphalt road pavements to address climate change Challenges – An overview. Applied Sciences (Switzerland), 12(24), Article 12515. https://doi.org/10.3390/app122412515 DOI: https://doi.org/10.3390/app122412515

Barbosa, A. E., Fontul, S., Freire, A. C., & Simões, A. R. (2023). Road pavement, road pollution, and sustainability under climate change increased temperature. Applied Sciences (Switzerland), 13(12), Article 6949. https://doi.org/10.3390/app13126949 DOI: https://doi.org/10.3390/app13126949

Bruinsma, J., Smith, K., Peshkin, D., Ballou, L., Eisenberg, B., Lurie, C., Costa, M., Ung, C., Nassiri, S., Shi, X., & Haselbach, L. (2017). Guidance for usage of permeable pavement at airports. In Guidance for Usage of Permeable Pavement at Airports. Washington, DC, USA, The National Academies Press. https://doi.org/10.17226/24852 DOI: https://doi.org/10.17226/24852

Eisenberg, B., Lindow, K. C., & Smith, D. R. (2015). Permeable pavements. In Permeable Pavements. American Society of Civil Engineers. https://doi.org/10.1061/9780784413784 DOI: https://doi.org/10.1061/9780784413784

Huang, W., Cai, X., Li, X., Cui, W., & Wu, K. (2020). Influence of nominal maximum aggregate size and aggregate gradation on pore characteristics of porous asphalt concrete. Materials, 13(6), Article 1355. https://doi.org/10.3390/ma13061355 DOI: https://doi.org/10.3390/ma13061355

Kuruppu, U., Rahman, A., & Rahman, M. A. (2019). Permeable pavement as a stormwater best management practice: a review and discussion. Environmental Earth Sciences, 78, Article 327. https://doi.org/10.1007/s12665-019-8312-2 DOI: https://doi.org/10.1007/s12665-019-8312-2

Lithuanian Standards Board. (2018). LST EN 12697-12:2018: Bituminiai mišiniai.

Bandymo metodai. 12 dalis. Bituminių bandinių jautrio vandeniui nustatymas [Bituminous mixtures - Test methods - Part 12: Determination of the water sensitivity of bituminous specimens].

Lithuanian Standards Board. (2017). LST EN 12697-17:2017: Bituminiai mišiniai. Bandymo metodai. 17 dalis. Akytojo asfalto bandinių dalelių nuostoliai [Bituminous mixtures - Test methods - Part 17: Particle loss of porous asphalt specimens].

Lithuanian Standards Board. (2020). LST EN 12697-19:2020: Bituminiai mišiniai. Bandymo metodai. 19 dalis. Bandinio pralaidumas [Bituminous mixtures - Test methods - Part 19: Permeability of specimen].

Lithuanian Standards Board. (2018). LST EN 12697-23:2018: Bituminiai mišiniai. Bandymo metodai. 23 dalis. Bituminių bandinių netiesioginio tempimo stiprio nustatymas [Bituminous mixtures - Test methods - Part 23: Determination of the indirect tensile strength of bituminous specimens].

Lithuanian Standards Board. (2019). LST EN 12697-30:2019: Bituminiai mišiniai. Bandymo metodai. 30 dalis. Bandinio paruošimas smūginiu tankintuvu [Bituminous mixtures - Test methods - Part 30: Specimen preparation by impact compactor].

Lithuanian Standards Board. (2019). LST EN 12697-5:2019: Bituminiai mišiniai. Bandymo metodai. 5 dalis. Didžiausiojo tankio nustatymas [Bituminous mixtures - Test methods - Part 5: Determination of the maximum].

Lithuanian Standards Board. (2020). LST EN 12697-6:2020: Bituminiai mišiniai. Bandymo metodai. 6 dalis. Bituminių bandinių tariamojo tankio nustatymas [Bituminous mixtures - Test methods - Part 6: Determination of bulk density of bituminous specimens].

Lithuanian Standards Board. (2019). LST EN 12697-8:2019: Bituminiai mišiniai. Bandymo metodai. 8 dalis. Bituminių bandinių tuštymėtumo rodiklių nustatymas [Bituminous mixtures - Test methods - Part 8: Determination of void characteristics of bituminous specimens].

Liu, H., Hao, P., & Xu, J. (2017). Effects of nominal maximum aggregate size on the performance of stone matrix asphalt. Applied Sciences, 7(2), Article 126. https://doi.org/10.3390/app7020126 DOI: https://doi.org/10.3390/app7020126

Ma, X., Li, Q., Cui, Y. C., & Ni, A. Q. (2018). Performance of porous asphalt mixture with various additives. International Journal of Pavement Engineering, 19(4), 355–361. https://doi.org/10.1080/10298436.2016.1175560 DOI: https://doi.org/10.1080/10298436.2016.1175560

Meng, A., Tan, Y., Xing, C., Lv, H., & Xiao, S. (2020a). Investigation on preferential path of fluid flow by using topological network model of permeable asphalt mixture. Construction and Building Materials, 242, Article 118163. https://doi.org/10.1016/j.conbuildmat.2020.118163 DOI: https://doi.org/10.1016/j.conbuildmat.2020.118163

Meng, A., Xing, C., Tan, Y., Xiao, S., Li, J., & Li, G. (2020b). Investigation on clogging characteristics of permeable asphalt mixtures. Construction and Building Materials, 264, Article 120273. https://doi.org/10.1016/j.conbuildmat.2020.120273 DOI: https://doi.org/10.1016/j.conbuildmat.2020.120273

Qiao, Y., Guo, Y., Stoner, A. M. K., & Santos, J. (2022). Impacts of future climate change on flexible road pavement economics: a life cycle costs analysis of 24 case studies across the United States. Sustainable Cities and Society, 80, Article 103773. https://doi.org/10.1016/j.scs.2022.103773 DOI: https://doi.org/10.1016/j.scs.2022.103773

Sañudo-Fontaneda, L. A., Andres-Valeri, V. C., Costales-Campa, C., Cabezon-Jimenez, I., & Cadenas-Fernandez, F. (2018). The long-term hydrological performance of permeable pavement systems in Northern Spain: An approach to the “end-of-life” concept. Water (Switzerland), 10(4), Article 497. https://doi.org/10.3390/w10040497 DOI: https://doi.org/10.3390/w10040497

Šernas, O., Vaitkus, A., Gražulytė, J., Skrodenis, D., Wasilewska, M., & Gierasimiuk, P. (2021). Development of low noise and durable semi-dense asphalt mixtures. Construction and Building Materials, 293, Article 123413. https://doi.org/10.1016/j.conbuildmat.2021.123413 DOI: https://doi.org/10.1016/j.conbuildmat.2021.123413

TRA ASFALTAS 08. (2009). Automobilių kelių asfalto mišinių techninių reikalavimų aprašas [TRA ASFALTAS 08 – The description of the technical requirements of roads asphalt mixture’s]. https://e-seimas.lrs.lt/portal/legalAct/lt/TAD/TAIS.335942/asr

Vaitkus, A., Gražulytė, J., & Kleizienė, R. (2014). Influence of static and impact load on pavement performance. 9th International Conference on Environmental Engineering, Vilnius, Lithuania. https://doi.org/10.3846/enviro.2014.173 DOI: https://doi.org/10.3846/enviro.2014.173

Weiss, P. T., Kayhanian, M., Gulliver, J. S., & Khazanovich, L. (2019). Permeable pavement in northern North American urban areas: research review and knowledge gaps. International Journal of Pavement Engineering, 20(2), 143–162. https://doi.org/10.1080/10298436.2017.1279482 DOI: https://doi.org/10.1080/10298436.2017.1279482

Zhang, S., & Guo, Y. (2015). Analytical equation for estimating the stormwater capture efficiency of permeable pavement systems. Journal of Irrigation and Drainage Engineering, 141(4), Article 06014004. https://doi.org/10.1061/(asce)ir.1943-4774.0000810 DOI: https://doi.org/10.1061/(ASCE)IR.1943-4774.0000810

Zhu, Y., Li, H., Yang, B., Zhang, X., Mahmud, S., Zhang, X., Yu, B., & Zhu, Y. (2021). Permeable pavement design framework for urban stormwater management considering multiple criteria and uncertainty. Journal of Cleaner Production, 293, Article 126114. https://doi.org/10.1016/j.jclepro.2021.126114 DOI: https://doi.org/10.1016/j.jclepro.2021.126114

Downloads

Published

28.06.2024

How to Cite

Jakubėnaitė, I., Vaitkus, A., Škulteckė, J., & Šernas, O. (2024). Performance of Laboratory Designed Permeable Asphalt Mixtures. The Baltic Journal of Road and Bridge Engineering, 19(2), 131-151. https://doi.org/10.7250/bjrbe.2024-19.639